海洋性 Shewanella 属細菌によるポリ(3-ヒドロキシブタン酸)の分解機構

平成 28 年度 8 月
2016 年 8 月

群馬大学大学院理工学府
博士後期課程 物質・生命理工学領域

13802181 宋 君哲 (Sung, Chun-Che)
目次

第1章 序論 ... 1
1-1 海洋におけるプラスチック汚染 ... 2
1-2 ポリ(3-ヒドロキシブタン酸) [P(3HB)]の生合成 ... 5
1-3 海洋における P(3HB)の分解 .. 7
1-4 海洋性 Shewanella 属細菌 .. 9
1-5 本研究の目的 ... 9

第2章 海洋環境からの P(3HB)分解 Shewanella 属細菌の単離と特徴付け 11
2-1 実験方法 .. 12
2-1-1 試薬 ... 12
2-1-2 培地 .. 12
2-1-3 微生物, ベクターおよびプライマー ... 13
2-1-4 海洋性 P(3HB)分解菌のスクリーニング ... 13
2-1-5 P(3HB)分解微生物の遺伝学的解析 ... 14
2-1-6 ゲノム DNA(gDNA)抽出 ... 15
2-1-7 GC 含率 .. 15
2-1-8 グラム染色 ... 15
2-1-9 生化学・生理学的性質 .. 16
2-1-10 形態観察 .. 16
2-1-11 培養塩濃度の菌体増殖への影響 .. 17
2-1-12 培養温度の菌体増殖とクリアゾーン形成能への影響 17
2-1-13 各種ポリエステルおよびオリーブオイル分解能力 ... 17
2-1-14 P(3HB)分解活性測定(滴度法) ... 17
2-1-15 炭素源の菌体増殖および培養上清の活性への影響 18
2-1-16 P(3HB)フィルムの分解 ... 18
2-2 結果と考察 ... 19
2-2-1 P(3HB)分解微生物の単離 .. 19
2-2-2 P(3HB)分解微生物の同定 ... 19
2-2-3 培養塩濃度の菌体増殖への影響 ... 22
2-2-4 培養温度の菌体増殖とクリアゾーン形成能への影響 22
2-2-5 各種ポリエステルおよびオリーブオイルの分解能力 23
2-2-6 炭素源の菌体増殖および培養上清の活性への影響 24
2-2-7 P(3HB)フィルムの分解 ... 25

第3章 海洋性 Shewanella 属細菌由来の熱不安定性 P(3HB)分解酵素の特徴付け 26
3-1 実験方法 .. 26
3-1-1 試薬

3-1-2 培地

3-1-3 微生物、ベクターおよびプライマー

3-1-4 JKCM-AJ-6,1α株の菌体外P(3HB)分解酵素遺伝子のクローニング

3-1-5 P(3HB)分解酵素の遺伝子破壊

3-1-6 P(3HB)分解酵素(PhaZshe)の精製

3-1-7 P(3HB)分解活性測定(濁度法)

3-1-8 ダンバク質の分析

3-1-9 Na⁺濃度、pHおよび温度の活性への影響

3-1-10 各金属イオンの濃度および阻害剤における活性の影響

3-1-11 基質特異性

3-1-12 速度論的解析

3-2 結果と考察

3-2-1 JKCM-AJ-6,1α株の菌体外P(3HB)分解酵素遺伝子のクローニング

3-2-2 phaZsheの塩基配列およびアミノ酸配列の決定

3-2-3 P(3HB)分解酵素の遺伝子破壊

3-2-4 野生株および大腸菌BL21株由来のPhaZsheの精製および特徴付け

3-2-5 速度論的解析

第4章総括

参考文献

業績目録

謝辞
第1章
序論
１-１ 海洋におけるプラスチック污染

我々の身の回りでは、石油由来の汎用性プラスチックを用いた多くの製品が使用されてい
る。2014年現在、全世界で3億１１００万トンのプラスチックが生産されている[1]。先進国
では使用後のプラスチックの大部分は、資源として回収され、リサイクルやサ
ーマルリサイクル等として有効活用されている。一方、少量ではあるが意図せずにその一
部は環境中に流出していることがわかっている。また、発展途上国では、先進国と比較す
るとプラスチックが環境へ流出する割合はずっと多い[2-4]。長期安定性という特性を有す
る汎用性プラスチックは、このように年々環境中に蓄積し、深刻な環境問題となっている。
特に懸念されているのは、海洋環境中に流出しているプラスチックで、驚く速さで(年間
530 - 1430万トン)蓄積していることがわかってきている[1, 2, 5]。1972年に初めて多くのプラスチック破片が北大西洋上に存在していることが報告された[6]。1988年にアメリカ海洋大気
庁が太平洋ゴミベルト(Great Pacific Garbage Patch)の存在を推定した[7]。さらにMooreらの
海洋漂流プラスチックに関する研究により、この問題は、世界的に注目されるようになった[8]。海域中におけるプラスチック破片の存在密度は最大で、1平方キロメートルあたり
334,271枚であり、その質量は、ブランクトンのそれの約6倍もあった。このような太平洋
ゴミベルトは、高密度のプラスチックの破片から構成されているため、「世界最大のゴミ
捨て場」と呼ばれている。太平洋においては、北太平洋環流によりプラスチック破片は、
主に二ヶ所に蓄積することがわかった。一つは日本の東側：Western Garbage Patchであり、
もう一つはハワイとカリフォルニアの間：Eastern Garbage Patchである[9] (Figure 1)。また、
太平洋ゴミベルトは、唯一のゴミベルトではなく、アメリカの東海岸沖合である北大西洋
でも同様な現象により、海洋ゴミ集積地域が出現しているとの報告がある。さらに、その
他の海洋域、すなわちインド洋、南太平洋、南大西洋にも同様な場所の存在が予測されてい
る[10]。

Figure 1. The Great Pacific Garbage Patch in the North Pacific Ocean[11].
1980年代には、プラスチック廃棄物に対して、プラスチック生産者は、プラスチック廃棄物は多種の廃棄物のうちのごく一部という認識しかなく、問題視してこなかった[12]。しかしながら、最近の研究によって海に流出したプラスチック廃棄物は、ただのゴミ問題ではなく、生態系、環境毒性、公衆衛生および経済など広範囲に影響を及ぼしていることがわかってきている。海洋環境におけるプラスチック廃棄物は、周りの汚染物を吸収および濃縮する能力を持ち、残留性有機汚染物質(POPS)や重金属の供給源となる[13]。Riosらの報告によると、海洋から収集したプラスチック廃棄物は、50%以上ポリ塩化ビフェニル(PCBs), 40%が農薬およびほぼ80%が多環芳香炭化水素(PAHs)を含有していた[14]。また、これらのプラスチック中の汚染物質の濃度は、海水より高く、海洋食物連鎖への汚染物質として、生態毒性の問題をはらんでいる。

海洋中に蓄積したプラスチック廃棄物は、主に polyethylene(PE)および polypropylene (PP)である[15, 16]。これらは、海水の密度よりも低い熱可塑性樹脂であり、包装、漁網、ロープ、糸およびブイなどとして最も一般的に使用されている。また、これらの汎用性プラスチックの長期安定性は、一旦、それらが海洋中に放出されれば蓄積する原因にもなっている[14]。海洋におけるプラスチック廃棄物は、摂取または絡まりにより海鳥、哺乳類およびウミガメに直接的な被害を引き起こしている[4, 17, 18] (Figure 2).

Figure 2. Examples of ingestion and entangle: (A) plastic in seabirds stomach[19]; (B) turtle entangled in fishing nets[20].
大きなプラスチック廃棄物は、サンゴ礁または藻場の漂流経路を遮断することによりそれらの死滅を引き起こす[21]。特に、漁業が行われている海域において大量に廃棄された漁具、網および釣り糸などは、廃棄されても海洋中の生物を捕獲し続け、「幽霊漁業」(ghost fishing)と呼ばれている[22, 23]。Matsuokaらの統計により、一つの廃棄された漁網あたり、30-328日であり、84-455匹の魚を捕獲すると推定されている。一方、甲殻類および大きな刺し網を含む場合、幽霊漁業を続ける時間は、30-586日であり、4.4-182匹の魚および甲殻類を捕獲する[24]。また、近年、大きなプラスチック廃棄物に加えて、プラスチックの破片や袋も注目されている。多くの海洋生物は、これらの破片や袋を摂取している[4, 25, 26]。海洋生物と海鳥は、小さなプラスチックを間違えて食べ物として摂取する。ウミガメは、薄いプラスチック袋を大好物のクラゲと間違えて食べてしまう[17]。これらの海洋生物は、プラスチックを摂取することにより胃の貯蔵容量および食欲の低下を引き起こし、最終的に死に至る[5]。Laistの報告によると、プラスチック摂取は全てのウミガメの86%, 海鳥の44%および海洋哺乳類の43%を含む267種の生物で認められた。この様にプラスチック廃棄物は、非常に多くの海洋生物に対して潜在的な脅威となっている可能性がある[27]。

さらに低密度なプラスチックの場合は、それらの破片は、海水中で分解されず、海流により移動することができる。これらの破片は、小さな移動体として付着した生物を新しい場所に運ぶ[28]。Reesらは、これらの移動体となりうるプラスチック破片は、*Perforatus perforates*というフジツボの群集の北上に関わっていると指摘している[29]。また、これらの廃棄物の表面の生物群集を調べたところ、珪藻、フジツボ、コケムシおよび様々な細菌が検出された[30]。このように、プラスチック廃棄物移動体は、種々の生物に新たな生息地を提供するため、外来種の新たな導入経路として非常に大きな存在だと考えられる[31]。また、このような原因で生物混合が生じることは、海洋生物の多様性に対しても潜在的な脅威となりうる[32]。

プラスチックの廃棄物は、生態系への影響だけでなく、人間たちの経済活動に対しても大きな影響を与えている。Takehamaの報告によると、日本におけるプラスチックの廃棄物による漁船への被害は、年間66億円であることが推定されている[33]。2005年の米国国立海洋大気庁(NOAA's)の報告によれば、プラスチックの廃棄物により269件のボート事故があり、死亡15人、怪我116人および300万ドルの経済損失があった[12]。アジア太平洋地域の海洋産業でも、このような損害は、年間10億ドルであると推定されている[34-36]。
1-2 ポリ(3-ヒドロキシブタン酸) [P(3HB)] の生合成

自然環境中の細菌の多くは、糖、アルコールおよび油を原料とし、エネルギーを細胞内貯蔵ポリエステルであるポリ(3-ヒドロキシアルカン酸)(PHA)として蓄えている[37, 38]。微生物は、外部に炭素源が不足すると、菌体内 PHA 分解酵素により菌体内の PHA をアセチル CoA に分解し、エネルギー源として利用することができる。つまり、PHA は、ヒトにおける脂肪に相当する貯蔵物質と考えることができる。1925 年に、パスツール研究所の Lemoigne により、Bacillus megaterium から、P(3HB) (Figure 3)が抽出された[39]。それ以降、多くの細菌で PHA を菌体内に蓄積することが明らかとなった[40]。

![Figure 3. Chemical structure of poly(3-hydroxybutyrate):P(3HB)](image)

側鎖にメチル基を有する P(3HB)は、最も代表的な PHA の一種である。P(3HB)は、ポリプロピレン(PP)と類似した性質を有するため(Table 1), 汎用プラスチックとしての応用が期待されている。しかしながら、P(3HB)単体は、結晶化し易く壊れて脆い性質を持つため、その使用用途は制限される[41, 42]。P(3HB)の物性向上のため、共重合体やその他の PHA 類の研究が検討されてきた[40]。その結果、これまでに 150 種類以上もの構造の異なる PHA 類が報告されている[43]。PHA 類は、その組成を変えることによって、Table 1 に示すように様々な物性を発現することが知られている。特に 3-ヒドロキシベンタン酸(3HV)との共重合体：poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)および 3-ヒドロキシヘキサン酸(3HHx)との共重合体：poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)は、優れた機械的性質と生分解性を両立させた材料として多くの研究報告がある[44-49]。また現在までに PHBV および PHBH は、商業生産されている[50, 51]。日本においては、株式会社カネカが PHBV を、年間約 1000 トン生産している。これらの P(3HB)およびその共重合体は、環境にやさしい材料としての利用が期待されている。
Table 1. Physical properties of P(3HB) copolymer and general-purpose plastics.

<table>
<thead>
<tr>
<th></th>
<th>Melting temperature (Tm)</th>
<th>Glass Transmission temperature (Tg)</th>
<th>Tensile strength (Mpa)</th>
<th>Elongation at break (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(3HB)</td>
<td>177</td>
<td>4</td>
<td>43</td>
<td>5</td>
<td>[52]</td>
</tr>
<tr>
<td>P(3HB-co-20mol% 3HV)</td>
<td>145</td>
<td>-1</td>
<td>20</td>
<td>50</td>
<td>[52]</td>
</tr>
<tr>
<td>P(3HB-co-12mol% 3HHx)</td>
<td>125</td>
<td>0</td>
<td>7</td>
<td>400</td>
<td>[53]</td>
</tr>
<tr>
<td>LDPE</td>
<td>130</td>
<td>-</td>
<td>11.9</td>
<td>496</td>
<td>[54]</td>
</tr>
<tr>
<td>HDPE</td>
<td>132</td>
<td>-</td>
<td>24</td>
<td>810</td>
<td>[55]</td>
</tr>
<tr>
<td>PP</td>
<td>175</td>
<td>-.10</td>
<td>34</td>
<td>400</td>
<td>[52]</td>
</tr>
</tbody>
</table>

3HV: 3-hydroxyvalerate
3HHx: 3-hydroxyhexanoate
4HB: 4-hydroxybutyrate
LDPE: low density polyethylene
HDPE: high density polyethylene
PP: polypropylene

P(3HB)およびその共重合体は、地圏環境に生息する多種多様な細菌により合成される[56]。一方、最近になって海洋環境からも例は少ないが、以下に示す細菌がP(3HB)合成菌として報告されている：Bacillus, Colwellia, Halomonas, Moritella, Oceanimonas, Paracoccus, Pseudoalteromonas, Saccharophagus, Shewanella およびVibrio 属細菌[57-63]。これらの海洋性細菌がP(3HB)を作っているという事実によって、P(3HB)は地圏のみならず海洋環境の中にも存在することが知られるようになってきた。海洋細菌によるP(3HB)の合成は、以下の利点があるため注目されている。(1)培養する際、塩が必要であるために、コンタミネーションの恐れが少ない。(2)海水を用いて培地を調整することが可能であり、培養にかかるコスト低減が見込まれる[60, 64, 65]。また、海洋環境は、典型的な貧栄養状態であるため、一般的に海洋性細菌は、多種多様な炭素源を異化することができる。例えば、海洋性細菌であるAlcanivorax 属およびOceanobacter 属細菌は、アルカン[66, 67]、 Cyclobacterium 属細菌は、芳香族化合物[68]を利用してエネルギー生産することができる。これらの特殊な異化経路を有する海洋性細菌のうち、さらにP(3HB)を合成することができる細菌も存在する。例えばOceanimonas doudoroffii 株は、リグニンを異化すると同時に、P(3HB)を合成することができる[60]。Saccharophagus degradans ATCC 43961 株は、テキーラバガス由来セルロース廃棄物を利用してP(3HB)を合成することができる[69]。
1-3 海洋におけるP(3HB)の分解

P(3HB)は、様々な環境中で優れた生分解性を示す[70]。現在までに、P(3HB)は、汚泥[71, 72]、河口堆積物[46, 73]、土壤[74-76]、淡水[77, 78]および海水[79, 80]など多くの環境において分解することが報告されている。海洋におけるP(3HB)の分解速度は、温度、材料の面積、溶存酸素量、塩度および微生物の種類など様々な因子に影響される[79, 81-83]。また、深海での高圧、低温、および低酸素溶存量などの条件は、P(3HB)の生分解速度を低下させる[84]。

環境中に存在するP(3HB)は、微生物が菌体外に分泌するP(3HB)分解酵素により加水分解する。微生物が、分解により生じたモノマーを栄養源として利用し、最終的には二酸化炭素と水に分解する。これまでに、数多くのP(3HB)分解菌が、様々な自然環境から単離されている[73, 74, 76, 77, 80, 85, 86]。さらに、これらのP(3HB)分解微生物から菌体外P(3HB)分解酵素が精製され、その性質が詳細に研究されてきた[80, 85, 87-93]。最近になって、遺伝子クローニング技術の発展を背景にP(3HB)分解酵素の分子レベルでの理解も進んできた[94-96]。

P(3HB)分解酵素は、活性中心にセリン残基を含むカルボキシルエステル加水分解酵素(EC 3.1.1.1)の一種である。P(3HB)分解酵素タンパク質のアミノ酸配列は、Figure 4Aに示すように、3つの領域から構成されている：リバーゼボックスを含む触媒ドメイン(CD)；高分子基質への吸着を媒介する基質結合ドメイン(SBD)；CDとSBDを結合するリンカードメイン(LD)[97, 98]。CDは、リバーゼボックスの位置により、Type A (CDの中央に位置する)およびType B (アミノ末端に近いところに位置する)に大別される[99]。LDには、フィブロネクチンIII型(fibronectin type III), トレオニン型(threonine)およびカドヘリン型(cadherin)の3つのタイプが存在している[98]。SBDには、PHBおよびPHVタイプが存在する[100, 101]。また、P(3HB)分解酵素には、以下に示す、共通の生化学的な特徴が見られる。(1)分子量は約40 - 60 kDa、(2)大部分の酵素の等電点は弱塩基性領域pH 7.5 - 9.8の間である、(3)中性のバッファー中で陰イオン交換担体と結合せず、疎水性担体と強く結合する、(4)pH値、温度またはイオン強度の広い範囲で安定である、(5)Diisopropyl fluorophates (DFP)あるいはPhenylmethane sulfonyl fluoride (PMSF)のような典型的なセリン加水分解酵素阻害剤によって失活される[102, 103]。

P(3HB)は、前述の通り多様な環境中で分解することが知られているが、現在までに単離されている分解菌は、ほとんどが土壌や淡水を単離源としているものに限られていた。一方で、海洋環境で単離源としたP(3HB)分解菌の研究例は少ない。Table 2に、現在までに海洋環境中から単離、同定されたP(3HB)分解微生物を示す。さらに、P(3HB)分解酵素タンパク質配列まで解析された研究は、Alcaligenes faecalis AE122[104]、Pseudomonas stutzeri YM1006[105]、Marinobacter sp. NK-1[106]およびBacillus sp. NRRL B-14911[107]4株に限られている。一方で、これらの海洋を単離源とする分解菌の中にも、淡水や土壌中に生息している菌もあるために、海洋特有のP(3HB)分解細菌の報告例は、ほぼMarinobacter属[108]
および Pseudoalteromonas 属[109]細菌のみと言ってもよい。その中でも、分解菌の同定、分解酵素の解析など、生分解機構が明らかにされた研究は、Marinobacter 属だけである。現在までに構造解析されたすべての海洋由来の P(3HB)分解酵素は、Figure 4B に示すように、2つの SBD、相対的に高い分子量 (>60kDa) を有していた。これらの特徴は、海洋の P(3HB) 分解酵素が、土壌や淡水中的 P(3HB) 分解酵素とは異なっており、異なる機構で海洋中で P(3HB) を分解していることを示唆している。

Table 2. P(3HB)-degrading bacteria from the marine environment.

<table>
<thead>
<tr>
<th>Year of publication</th>
<th>Strain</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Alcaligenes faecalis AE122</td>
<td>[110]</td>
</tr>
<tr>
<td>1997</td>
<td>Pseudomonas stutzeri YM1006</td>
<td>[93]</td>
</tr>
<tr>
<td>2000</td>
<td>Marinobacter sp. NK-1</td>
<td>[108]</td>
</tr>
<tr>
<td>2000</td>
<td>Pseudoalteromonas sp. NRRL B-30083</td>
<td>[109]</td>
</tr>
<tr>
<td>2001</td>
<td>Streptomyces sp. SNG9</td>
<td>[111]</td>
</tr>
<tr>
<td>2005</td>
<td>Nocardiopsis aegyptia sp. nov. DSM 444427</td>
<td>[112]</td>
</tr>
<tr>
<td>2010</td>
<td>Enterobacter sp. IBP-VN1, Bacillus sp. IBP-VN2, Gracilibacillus sp. IBP-VN3, Enterobacter sp. IBP-VN4, Enterobacter sp. IBP-VN5 and Enterobacter sp. IBP-VN6.</td>
<td>[113]</td>
</tr>
<tr>
<td>2011</td>
<td>Bacillus sp. NRRL B-14911</td>
<td>[107]</td>
</tr>
</tbody>
</table>

CD

(A) General P(3HB) depolymerase

LD

SBD

(B) Marine P(3HB) depolymerase

Figure 4. Domain structure of P(3HB) depolymerases. (A) General P(3HB) depolymerase[97]. (B) Marine P(3HB) depolymerase. Fn III, fibronectin type III; Thr, threonine; Cad, cadherin; PHV, PHV type SBDP; PHB, PHB type SBD.
1-4 海洋性 Shewanella 属細菌

海洋性細菌としてよく知られる Shewanella 属細菌は、Gamma Proteobacteria 綱(class)に属している。また、Shewanella 属細菌は、Shewanellaceae 科(family)に属する唯一の属(genus)であり、20 種類以上の種(species)から構成されている属(genus)である[114]。Shewanella 属細菌は、海水、食品(海洋からの)、海洋生物、海洋油田、あるいは深海の堆積物など幅広い海洋環境から単離されている[115-117]。そのうち一部の種は、人間または魚の病原菌として報告されている[118, 119]。病原菌として有名である Shewanella 属細菌は、Shewanella putrefaciens である。S. putrefaciens は、魚の腐敗に関わっている[120]。この細菌には、嫌気呼吸能力、耐塩性、低温適合性があるため、魚または魚の食品、製品および発酵品にも存在していることが報告されている[121]。また、最近の研究において Shewanella 属細菌は、微生物燃料電池への応用が期待されている[122, 123]。また、Shewanella 属細菌では、嫌気条件下で鉄を含む様々な物質を電子受容体として利用することが可能である。例えば、フマル酸塩、硝酸塩、ジェチルスルホキシド(DMSO)、トリメチルアミン N-オキシド(TMAO)、亜硝酸塩および酸化マンガンなどを電子受容体として利用できる[124]。それ以外、ウラン[U(VI)][125]、クロム[Cr(VI)][126]、ヨウ素酸[127]、テクネチウム[128]、プルトニウム[130]、サイラーシラミ[131]、亜テルル酸塩[131]、バナジン酸塩[132]およびニトロ芳香族化合物[133, 134]などを電子受容体として利用できることが報告されている。この様に、Shewanella 属細菌は、汎用性の高い電子受容能力を持つため、様々な有機物の分解に関わっている。また、多様な異化能力を有するため、海洋環境における炭素循環に重要な役割を果たしている[135]。

1-5 本研究の目的

汎用プラスチックは、軽く、加工しやすく、価段が安いことから現代社会の中でさまざまな場面で活躍している。しかしながら、汎用プラスチックは長期安定性を有しており、長い期間を過ぎても分解されず、深刻な環境問題を引き起こしている。最新のデータによれば 2014 年現在、192 沿岸国(世界人口の 93%)から、530 - 1430 万トンのプラスチックが海洋環境に流出している[1, 2, 5]。特に、廃棄された様々なプラスチック製品が、海洋に流出し、海洋生態系を脅している[12, 16, 136]。また、漁業が行われている海域においては大量の廃棄された漁具が確認され[137]、「幽霊漁業」(ghost fishing)により、水産資源に大きなデメージを与える深刻な経済問題を引き起こしている[138, 139]。さらに、海洋環境中で漂流するマイクロプラスチックには PCBs、PAHs などの毒物が付着しやすいことが知られている。海洋生物がこれらのマイクロプラスチックを取り込むことにより、毒物は海洋生物の体内に蓄積し、最終的には、ヒトに取り込まれることで、甚大な影響を与える可能性が示唆されている[140, 141]。このように、年々増加するプラスチックの廃棄物をどのように管理して処理すべきかが、大きな環境問題の 1 つとなっている。
このような背景から、自然環境で分解する生分解性プラスチックは環境負担を軽減する材料として注目され始めた。生分解性プラスチックとして実用化の対象となっている代表的な材料の一つはP(3HB)である。海洋環境でP(3HB)あるいはその共重合体の実用性を高めるためには、物性のさらなる改善とともに、海洋環境中での生分解速度を精密に制御する必要がある。現在まで、土壌環境や、淡水環境におけるP(3HB)の分解性は詳細に研究され、P(3HB)分解微生物の同定、分解酵素の構造と機能が明確になっている。しかしながら、海洋環境中でのP(3HB)の生分解に関する研究は少ない。海洋特有の低温および高塩濃度の環境下は、一般的な陸生分解細菌の生育にとっては至適環境ではない。このような海洋環境中でのP(3HB)生分解機構を解明すれば、海洋環境中において最適な生分解性プラスチックを分子設計する上で重要な知見を得る可能性がある。

本博士論文では、海洋環境でのP(3HB)分解機構を明らかにするために、海洋性P(3HB)分解細菌を単離し、そのP(3HB)分解酵素の構造と性質を調べる。さらに、海洋環境でのP(3HB)分解メカニズムを考察する。

第1章では、本博士論文の背景と先行の研究例を述べ、研究目的を明確にする。

第2章では、新たに焼津港海水から海洋性P(3HB)分解菌を単離・同定し、その生育条件、ポリエステルの分解特性および生化学的特徴を明らかにする。

第3章では、単離された海洋性P(3HB)分解菌のP(3HB)分解酵素遺伝子をクローニングし、酵素タンパク質の一次構造を明らかにする。また、野生株および組み換え体由来の酵素を精製し、それらの構造と機能との関係を調べる。

第4章では、各章の研究結果を総括し、今後の課題について議論する。
第2章
海洋環境からの P(3HB)分解 Shewanella 属細菌の単離と特徴付け
2-1 実験方法
2-1-1 試薬
ポリ(3-ヒドロキシブタン酸)[P(3HB)]は、三菱ガス化学(株)から提供された。ポリ(ヒドロキシブタン酸-co-3-ヒドロキシシグ草酸)[P(3HB-co-3HV)]はICI社、ポリ乳酸(PLA)は島津製作所、ポリ(e-カプロラクトン) (PCL)はダイセル化学工業社、ポリ[ブチレンアジペート-co-ブチレンテレフタレート](PBAT)は BASF 社、ポリエチレンサクシネート(PESu)は日本触媒(株)、ポリブチレンサクシネート(PBSu)、およびポリブチレンサクシネートアジペート(PBSA)は昭和高分子株式会社から各々提供された。それぞれの高分子をクロロホルムに溶解し、メタノールで再沈させた。沈殿物を、濾紙（FILTER PAPER No.2, ADVANTEC 社製）により回収した。少量の溶媒を含む濾過物を、そのまま乳鉢でパウダーになるまですり潰した。パウダー状にした高分子を、減圧乾燥させた後、使用した。その他の試薬は、市販の特級試薬をそのまま使用した。高分子フィルムを作製するために、再沈殿した高分子粉末 0.5 g をクロロホルム 30 mL に溶解し、ガラス製のフラットシャーレで蒸発させた。それを、アルミ箔で覆い、小さい穴を 1 つ開け、溶液を蒸発させた。溶液が完全に蒸発した後、結晶状態が平衡に達するまで 3 週間室温で放置した。

2-1-2 培地
実験で使用した各種培地の組成を Table 3 および Table 4 に示す。固体培地を作製する際は、さらに 1.5%の寒天を加えた。マリン培地を作製する際は、さらに 3%の NaCl を加えた。ポリエステルの乳化は、ポリエステル 1 g をクロロホルム 100 mL に溶かし、Plysurf (第一工業株式会社製) 0.01% (wt/v)，および蒸留水 500 mL を加え、超音波処理(Tomy UD-200, OUTPUT level 8)を 3 分間行った。乳化液中のクロロホルムを、室温で摂押し続けることにより除去した。この乳化液に Table 2-2 に示した試薬および 1.5%の寒天を加えポリエステル乳化培地とした。培地を 121℃、15 分間オートクレーブ滅菌し、その後、滅菌シャーレに流し込んだ。

Table 3. The composition of LB medium (pH7.5)

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypeptone</td>
<td>10.0 g/L</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>5.0 g/L</td>
</tr>
<tr>
<td>NaCl</td>
<td>5.0 g/L</td>
</tr>
</tbody>
</table>

Table 4. The composition of mineral medium (pH7.0)

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH<sub>2</sub>PO<sub>4</sub></td>
<td>4.6 g/L</td>
</tr>
<tr>
<td>NaH<sub>2</sub>PO<sub>4</sub> · 12H<sub>2</sub>O</td>
<td>11.6 g/L</td>
</tr>
<tr>
<td>MgSO<sub>4</sub> · 7H<sub>2</sub>O</td>
<td>0.5 g/L</td>
</tr>
<tr>
<td>NH<sub>4</sub>Cl</td>
<td>1.0 g/L</td>
</tr>
<tr>
<td>FeCl<sub>2</sub> · 6H<sub>2</sub>O</td>
<td>0.1 g/L</td>
</tr>
<tr>
<td>Yeast Extract</td>
<td>0.5 g/L</td>
</tr>
</tbody>
</table>
2-1-3 微生物，ベクターおよびプライマー
実験で使用した微生物，ベクターおよびプライマーを Table 5 に示す。プライマーの位置を Figure 5 に示す。

Table 5. Microbial strains, vectors and primers used in this study.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Relevant characteristic or sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli DH5α</td>
<td>supE44 ΔlacU169(q80lacZΔM15) hsdR17 recA1 gyrA96 thi-1 relA1</td>
<td>Toyobo</td>
</tr>
<tr>
<td>JKCM-AJ-6,1α</td>
<td>P(3HB)-degrading bacterium</td>
<td>This study</td>
</tr>
<tr>
<td>Vectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMD20</td>
<td>Cloning vector; Amp', lacZ</td>
<td>Takara</td>
</tr>
<tr>
<td>16S-JKCM-AJ-6,1α</td>
<td>pMD20 containing 16S rDNA of strain JKCM-AJ-6,1α; Amp', lacZ</td>
<td>This study</td>
</tr>
<tr>
<td>Primers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M13M4</td>
<td>GTAAAACGACGGCCAG</td>
<td>Takara</td>
</tr>
<tr>
<td>M13RV</td>
<td>CAGGAAACAGCTATGAC</td>
<td>Takara</td>
</tr>
<tr>
<td>16Sf</td>
<td>GTTGATCATGTCGTCGA</td>
<td>[142]</td>
</tr>
<tr>
<td>16Sr</td>
<td>TACCTTTGTCGATTCGCA</td>
<td>[143]</td>
</tr>
<tr>
<td>522f</td>
<td>CACGCGGCGGGTGATWC</td>
<td>[144]</td>
</tr>
<tr>
<td>943r</td>
<td>ACCGCTGTGGCGGCCC</td>
<td>[145]</td>
</tr>
</tbody>
</table>

Figure 5. Position of primers used for 16S rDNA.

2-1-4 海洋性 P(3HB)分解菌のスクリーニング
50 μL の焼津港の海岸海水(34°52’09.8"N 138°19’30.4"E)をマリン P(3HB)乳化培地上に塗布し，30°C で培養した。出現したコロニー周辺のクリアゾーン形成により P(3HB)分解菌をスクリーニングした[74, 99, 146]。さらに，単離菌の純化はマリン LB 固体培地上で画線法により行われた。
P(3HB)分解微生物の遺伝学的解析

単離株の16S rDNAをコロニーPCR法により増幅した[142, 147]。使用したプライマーは、16Sr/16Sr (Table 5)であり、これらを各々20pmolずつ用いた。爪楊枝でLB固体培地上の菌株を採取し、滅菌超純水にこれを再懸濁し、テンプレートとして用いた。PCRの条件を、Table 6に示す。PCR産物を、T-Vector pMD20 (TaKaRa社製)に連結した（Table 7）。塩化カルシウム法を用いて、組換えプラスミドを大腸菌DH5α株（Table 5）に形質転換した。その培養液を5000 rpm、1分間遠心し、菌体を回収した。回収した大腸菌をアンピシリン50μL (100 mg/mL)，Isopropyl-β-D-thiogalactopyranoside (IPTG 1mM) 25 μL、5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal 0.1mM) 30 μLを塗布したLB培地に、培養した。プレート上に形成されたコロニーの中から白色コロニーを選び、これらからプラスミドDNAをアルカリ法により抽出した。プラスミドDNAの消化は，EcoRI 0.5 μL, buffer O + 1 μL (Fermentas社製)および抽出したプラスミドDNA 5 μL、滅菌超純水3.5 μLを37°Cで2時間、保温することにより行った。インサートの存在が確認された組換えプラスミドDNAを持つ組換え大腸菌株を、レプリカコロニーからLB培地に植菌し、37°Cで一晩培養した。プラスミドDNAをアルカリ法により抽出した。精製プラスミドDNAの濃度および純度は、分光光度計GeneQuant p ro (Pharmacia Biotech社製)を用いて定量された。得られたクローンをダイデオキシ法によりシークエンシング解析した。塩基配列及び相同性解析は、プログラムGENETYX (Genetyx Inc., Tokyo, Japan)あるいはプログラムblastn (http://www.ncbi.nlm.nih.gov/blast)を用いて行われた。DNA配列のアライメントに対して、プログラムClustalW[149]を用いた。進化系統樹は、近隣結合法(neighbor-joining method)[150]によりプログラムMEGA5[151]を用いて構築された。

Table 6. PCR experiment.

<table>
<thead>
<tr>
<th>PCR condition</th>
<th>Thermal cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template (bacterial cells in ddH2O)</td>
<td>5 μL</td>
</tr>
<tr>
<td>16Sr (20pmol)</td>
<td>0.2 μL</td>
</tr>
<tr>
<td>16Sf (20pmol)</td>
<td>0.2 μL</td>
</tr>
<tr>
<td>10× Ex Taq Buffer</td>
<td>1 μL</td>
</tr>
<tr>
<td>dNTP</td>
<td>1 μL</td>
</tr>
<tr>
<td>Ex Taq</td>
<td>0.1 μL</td>
</tr>
<tr>
<td>ddH2O</td>
<td>2.5 μL</td>
</tr>
<tr>
<td>Total</td>
<td>10 μL</td>
</tr>
</tbody>
</table>

Table 7. Ligation mixture (total 10 μL).

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2× Rapid Ligation Buffer</td>
<td>5 μL</td>
</tr>
<tr>
<td>T-Vector pMD20 (5-50 ng/μL)</td>
<td>1 μL</td>
</tr>
<tr>
<td>ddH2O</td>
<td>1.5 μL</td>
</tr>
<tr>
<td>T4 DNA ligase (3 U/μL)</td>
<td>1.0 μL</td>
</tr>
<tr>
<td>PCR product</td>
<td>1.5 μL</td>
</tr>
</tbody>
</table>
2-1-6 ゲノム DNA(gDNA)抽出

ゲノム DNA 抽出は、Pitcher らの方法[142, 152]に準拠して行われた。坂ロフラスコ中、100 mL の LB 培地に菌株を植菌し、30℃で一晩培養した。培養液を遠心分離(6000 rpm, 15 min, 4℃)し、菌体を回収した。得られた菌体ペレットを、TE バッファー(Table 8) 8.5 mL に再懸濁させた。懸濁液にリゾチーム 85 mg を加え、37℃で 1 時間保温した。その後、10% SDS 水溶液 450 μL、Proteinase K (20 mg/mL) 50 μL を加え、50℃で 5 時間保温した。これに等量のフェノール：クロロホルム：イソアミルアルコール (25: 24: 1, v/v) を加え、室温で 30 分間穏やかに振とうした。遠心分離(6000 rpm, 30 min, 25℃)により上層を回収した。回収した上層に、等量のイソプロパノール、1/10 量の 5M NaCl を加え、gDNA を沈殿させて回収した。これを 70%エタノール 1 mL で洗浄し、gDNA を減圧乾燥させた。その後、TE バッファーに溶かした。

Table 8. The composition of TE buffer(pH8.0)

<table>
<thead>
<tr>
<th>Tris-HCl</th>
<th>10mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>1mM</td>
</tr>
</tbody>
</table>

2-1-7 GC 含率

GC 含率測定は、Wakizaka らの方法[153-156]に準拠して行われた。100 µL の JKCM-AJ-6,1α 株の gDNA (1 µg/mL)を用いて 100℃で 5 分加熱し、氷水で急冷した。その後、ヌクレアーゼ P1 1μL (500 U/mL)を添加し、50℃で 1 時間保温した。その後、溶液を HPLC で分析した。測定条件は、カラム: InertSustain C18、溶出溶媒: 0.02M NH₄H₂PO₄ 溶液-アセトニトリル (200:1, V/V)、流速: 0.2 mL/min、検出波長: 270nm である。測定試料は、GC 含量測定用試薬キット(ヤマサ醤油株式会社製)を用いて調製した。標準物質 (dCMP, dTMP, dGMP, および dAMP, 各々 50 µM ずつ)は、各々 3.5, 5.8, 6.3, および 11 min の順で溶出した。GC 含率(Mol%) は、(1)式を用いて決定された。

\[GC (\text{Mol\%}) = 100 \times (G_S/G_R+C_S/C_R)/(A_S/A_R+G_S/G_R+C_S/C_R+T_S/T_R) \]

ここで、N_S は試料を分析したクロマトグラムにおけるピーク面積値、N_R は標準物質を分析したクロマトグラムにおけるピーク面積値を示している。Excel を使用して、GC 含率のデータを解析した。

2-1-8 グラム染色

グラム染色を、カラーグラム 2 キット (bioMérieux 社製)を用いて行った。LB 固体培地に菌株を画線法により植菌し、30℃で 24 時間振とう培養した。爪楊枝で LB 固体培地上の菌株を取ってスライドガラスに薄く塗り、火炎の上部でスライドガラスをすばやく数回通
過させ火炎固定した。その後、固定した標本上に1滴のR1液を滴下し1分間放置した後、蒸留水で静かに洗い流した。次に、1滴のR2液を滴下し1分間放置した後、蒸留水で静かに洗い流した。さらに、数滴のR3液で脱色した後、蒸留水で静かに洗い流した。最後に1滴のR4液を滴下し1分間反応させた後、蒸留水で静かに洗い流した。自然乾燥した後、光学顕微鏡で観察した。

2-1-9 生化学・生理学的性質

単離株の生化学的および生理学的性質を、API 20NE（ビオメリーバイテック社製）を用いて評価した。菌株をAPI 20NEキットに附属のカップ内において、30℃で好気的に培養し、24時間および48時間後に、自発反応および試薬添加による呈色反応を読み取った。単離株の酵素プロファイリングは、半定量酵素活性キットAPI ZYM（ビオメリーバイテック社製）を使用して作成された。JKCM-AJ-6,1α株のコロニーを、白金耳に1ループ採取し、2mLの0.85%滅菌生理的食塩水に懸濁させた。懸濁液をAPI ZYMプレートのカップに接種し、37℃で約4時間保温した。ZYM A試薬とZYM B試薬を、カップに1滴ずつ添加した後、蛍光灯をコントロールカップ溶液の黄色い発色がなくなるまで照射した。呈色程度は、判定表に基づき半定量的に評価された。

2-1-10 形態観察

観察用のサンプルは、Kasuyaらの方法[108]に準拠して前処理した。LB固体培地にJKCM-AJ-6,1α株を画線法により植菌し、30℃で24時間保温した。菌体が付着した固体培地を、1cm×1cmの大きさで切り出し、2.5%のグルタルアルデヒド溶液中、室温で1時間保持した。その後、超純水で洗浄し、50, 60, 70, 80, 90および100%のエタノールに順次、それぞれ20分間浸し、脱水した。最後に酢酸イソアミルで1時間置換し、その後真空乾燥した。この試料を金で真空蒸着し、走査型電子顕微鏡(Tabletop microscope TM3030, Hitachi High-Technologies Corporation, Japan)で観察した。
2-1-11 培養塩濃度の菌体増殖への影響

LB 培地 200 mL に、JKCM-AJ-6,1α 株を植菌し、30°C で 16 時間振とう培養した。この培養液を、10 mL/L の割合で、各 NaCl 濃度の（0M, 0.2M, 0.4M, 0.6M, 0.8M, 1.0M, 1.2M, 1.4M, 1.6M, 2.0M, 5.0M および飽和状態）栄養培地 100 mL（Table 9）に菌を植菌して 30°C で振とう培養した。それぞれの塩濃度における菌株の増殖度合を調べた。培養開始から 2 時間あるいは 1 時間毎に、培養液 1 mL を採取し、濁度(600nm)を測定した。増殖速度定数 μ は、(2)式を用いて決定された。

\[
\frac{dN}{dt} = \mu N \tag{2}
\]

ここで、N は濁度、t は時間を示している。Excel を使用して、菌体増殖のデータを解析した。

Table 9. The composition of nutrient medium (pH7.0).

<table>
<thead>
<tr>
<th>因子</th>
<th>個数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypeptone</td>
<td>10.0 g/L</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>5.0 g/L</td>
</tr>
</tbody>
</table>

2-1-12 培養温度の菌体増殖とクリアゾーン形成能への影響

P(3HB)乳化培地の上に JKCM-AJ-6,1α を植菌し、4°C, 15°C, 25°C, 30°C, 37°C, 50°C および 60°C で保温した。それぞれの温度における菌株の増殖度合とクリアゾーン形成能力を観察した。

2-1-13 各種ポリエステルおよびオリーブオイル分解能力

各種ポリエステルおよびオリーブオイル(P(3HB), P(3HB-co-3HV), PLA, PCL, PBAT, PESu, PBSu, および Olive oil)乳化培地上に JKCM-AJ-6,1α 株を画線し、30°C および 15°C で保温した。コロニー周辺に形成されたクリアゾーンの大きさにより各種基質の分解能力を評価した。

2-1-14 P(3HB)分解性測定(濁度法)

P(3HB)微粒子は、使用前に以下の手順で精製された。まず始めに、P(3HB)微粒子に対して、30 倍の体積の超純水を加え、室温で 2 時間摺拌した。その後 4°C で 10 分間、5000 rpm で遠心し、上清を取り除いた(ステップ 1)。続いて、回収した P(3HB)微粒子に対して 30 倍の体積のアセトンを加え、室温で 2 時間摺拌した。その後 4°C で 10 分間、5000 rpm で遠心し、上清を取り除いた(ステップ 2)。P(3HB)微粒子に対して、30 倍の体積のヘキサンを加え、室温で 2h 摺拌した。その後 4°C で 10 分間、5000 rpm で遠心し、上清を取り除いた(ステップ 3)。ステップ 1-3 の操作を 2 回繰り返した。最後に P(3HB)微粒子に対して、30 倍の体積の超純水を加え、室温で 2 時間摺拌した。その後 4°C で 10 分間、5000 rpm で遠心し、上清を取り除き、その後風乾し、微粒子を室温で保存した。
P(3HB)分解酵素活性を、精製したP(3HB)微粒子を基質として濁度法で決定した[99]。
P(3HB)基質は、精製したP(3HB)微粒子を超音波処理し、バッファー(Table 10)中に懸濁させた。この中に所定量の培養上清あるいは酵素を注入することにより分解反応を開始した。P(3HB)分解酵素により、水に不溶性のP(3HB)微粒子は水溶性オリゴマーへと分解される。酵素分解中の反応溶液濁度の時間変化を650nmの光の透過度の減少から測定した。1 Unitは、1分間に650nmの濃度を1減少させるために必要な酵素量とし、培養上清あるいは酵素中の活性はU/mLで表した。

<table>
<thead>
<tr>
<th>Table 10. The composition of P(3HB) matrix(pH7.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl</td>
</tr>
<tr>
<td>CaCl₂・2H₂O</td>
</tr>
<tr>
<td>P(3HB) granule</td>
</tr>
</tbody>
</table>

2-1-15 炭素源の菌体増殖および培養上清の活性への影響

LB培地200mLに、菌株を植菌し、30°Cで16時間振とう培養した。D-グルコース、コハク酸、(R)-3-ヒドロキシプタン酸、(S)-3-ヒドロキシプタン酸、乳酸、D-ソルビトール、ぶどう糖、アジピン酸、D-(-)-マンノース、スクロースあるいはP(3HB)を唯一の炭素源として0.2%(wt/v)および0.2M NaCl含むミネラル培地に、前培養液を10mLの割合で植菌し、15°Cで48時間振とう培養した。上清の酵素活性は、0.5M NaClを含むP(3HB)基質を用いて濁度法[2-1-14]により評価された。

2-1-16 P(3HB)フィルムの分解

P(3HB)フィルムの分解は、Kasuyaらの方法[99]に準拠して行われた。0.2M NaClの栄養培地およびミネラル培地20mLにP(3HB)のフィルムを入れ、121°C、15分間オートクレーブ滅菌した。その後JKCM-AJ-6.1a株を植菌し、15°Cおよび30°Cで5、10、15および20日間振とう培養した。培養後、回収したフィルムは、メタノールと超純水で洗浄され、その後真空乾燥された。分解前のフィルムの重量から分解後のフィルム重量を減算することによって、P(3HB)分解量を決定した。
2-2 結果と考察

2-2-1 P(3HB)分解微生物の単離

焼津港の海水を植種源として、マリン P(3HB)乳化培地を用いたクリアゾーン法により、P(3HB)分解菌を単離した。その結果、1 株の P(3HB)分解菌を単離した。単離株を JKCM-AJ-6,1α と命名した。JKCM-AJ-6,1α 株は、マリン P(3HB)乳化培地上でコロニー周辺に明瞭なクリアゾーンを形成した(Figure 6)。

![Figure 6. Clearing zone by strain JKCM-AJ-6,1α on the P(3HB) containing marine mineral plate. The strain formed clear zone after incubation at 15℃ for 72h.](image1)

2-2-2 P(3HB)分解微生物の同定

JKCM-AJ-6,1α 株の形態を走査型電子顕微鏡(SEM)を用いて観察した。Figure 7 に顕微鏡像を示す。JKCM-AJ-6,1α 株は、長桿状で、長さはおよそ 0.85~2.6 μm 程度であることがわかった。また、JKCM-AJ-6,1α 株について遺伝系統的解析が行われた。P(3HB)分解菌 JKCM-AJ-6,1α 株の 16S rDNA 配列に基づき作製した系統樹を、Figure 8 に示す。JKCM-AJ-6,1α 株は、Shewanella sp.の高い相間性を示した。また、Figure 8 に示すように、本株を含む海洋に特有な種は、他の P(3HB)分解菌種とは、遺伝学的距離があった。

![Figure 7. A scanning electronic micrograph of the strain. The bar indicates 3.0 μm in length.](image2)
さらに，本単離株のGC含率，グラム染色および生化学的，生理学的性質を調べた。その際，Shewanella putrefaciens (ATCC 8071)[157]を比較株として用いた。JKCM-AJ-6.1α株は，グラム陰性であり，GC含率は48.8%であった。また，本株は，オキシダーゼ，硝酸還元試験，エスクリンおよびゼラチンの加水分解試験において陽性を示し，グルコース，L-アラビノース，N-アセチル-D-グルコサミン，マルトース，n-カプリン酸およびdl-リンゴ酸を同化した（Table 11）。本株は，比較株に加えてグルコース，マルトースおよびn-カプリン酸を同化した。また，本株は，アルカリフォスファターゼ，エステラーゼ（C4），エステラーゼリパーゼ（C8），ロイシンアミノルバーゼ，トリプシン，キモトリプシン，酸性ホスファターゼ，ナフトール-AS-BI-フォスフォヒドロラーゼおよびN-アセチル-β-D-グルコサミダーゼ活性を示し，リパーゼ（C14）活性を有していなかった（Table 12）。本株の酵素プロファイアルは，比較株を含めたShewanella属の菌株と類似していた。この結果からも，本株がShewanella属細菌と近縁種であることが示唆された。Shewanella属細菌は，海洋性細菌としてよく知られており，今までに海水[127]，海底堆積物[158]，海洋生物[159]などから単離されている。Shewanella属細菌は海洋環境で種々の有機化合物を使用する能力を持っているため，海洋炭素循環に重要な役割を果たしている可能性がある[135]。また，Shewanella属は環境汚染のバイオレメディエーション[160, 161]または微生物燃料電池[122, 162]としての応用例が報告されている。Shewanella属細菌には，ゲノムDNA完全に解析された31株の中3株[Shewanella sp. MR-7 (accession no. NC_008322), Shewanella sp. MR-4 (NC_008321), and Shewanella sp. HN-41 (NZ_AFOZ01000000)]のゲノムDNA上に推定のP(3HB)分解酵素の遺伝子が存在する。一方，このような推定遺伝子の発見にもかかわらず，P(3HB)を分解できるShewanella属細菌は今までに報告例はない。今回，我々は，はじめて

Figure 8. Phylogenetic tree of the P(3HB)-degrading isolates and related bacteria based on 16S rDNA sequence comparisons. Accession numbers are given in parentheses. The bar indicates 2% estimated sequence divergence.
P(3HB)を分解するShewanella属細菌を単離した。このことから、Shewanella属細菌は、海洋中において汚染物質のバイオレメディエーション[160, 161]のためだけではなく、P(3HB)の炭素循環における重要な細菌群の一つであることが示唆された。

Table 11. Biochemical and physiological properties of strain JKCM-AJ-6,1α.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>JKCM-AJ-6,1α</th>
<th>Shewanella putrefaciens ATCC 8071</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram strain</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>Oxidase</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Indole production</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxidation of glucose to gluconate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arginine dehydrodase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urease</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydrolysis of esculin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolysis of gelatin</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Utilization of carbon source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>L—Arabinose</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D—mannose</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D—mannitol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N—Acetyl—D—glucosamine</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Glucanate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Capric acid</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Adipic acid</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>dl—Maleic acid</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citrate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenyl acetate</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 12. Enzyme production profile of strain JKCM-AJ-6,1α.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>JKCM-AJ-6,1α</th>
<th>Shewanella putrefaciens ATCC 8071</th>
<th>Shewanella spongiae sp. nov. HJ039[163]</th>
<th>Shewanella aquimarina sp. nov. SW-117[164]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Esterase (C4)</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Esterase lipase (C8)</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td>-</td>
</tr>
<tr>
<td>Lipase (C14)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leucine arylamidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Valine arylamidase</td>
<td>-</td>
<td>(+)</td>
<td>(+)</td>
<td>-</td>
</tr>
<tr>
<td>Cystine arylamidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trypsin</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acid phosphatase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Naphthol AS-BI phosphohydralase</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-Galactosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-Glucuronidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-Glucosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-Glucosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N-Acetyl-β-glucosaminidase</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>α-Mannosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α-Fucosidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+: means present.
(+): means weakly present.
−: means negative.
2-2-3 培養塩濃度の菌体増殖への影響

異なる NaCl 濃度(0M から飽和まで)の栄養培地中での JKCM-AJ-6,1α の好気条件下 30℃での増殖を観察した(Figure 9)。JKCM-AJ-6,1α 株は、NaCl 濃度 0.1M-0.2M で最も高い比増殖速度(0.96-0.99)を示し、0.6M 以上では比増殖速度は大幅に低下した。さらに、本株は、NaCl 濃度 1M 以上の培地中で、増殖しなかった。この結果から、JKCM-AJ-6,1α 株は、既知の海洋性 P(3HB)分解菌と同様に、0M-0.8M の Na⁺存在下で増殖可能な海洋性耐塩細菌であることが示唆された[165]。

Figure 9. Specific growth rates of strain JKCM-AJ-6,1α at different Na⁺ concentrations at 30℃ in a nutrient medium.

2-2-4 培養温度の菌体増殖とクリアゾーン形成能への影響

培養温度 4-60℃において、JKCM-AJ-6,1α 株の菌体増殖程度およびクリアゾーン形成能を調べた(Table 13)。JKCM-AJ-6,1α 株は、50℃以上では増殖せず、30-37℃で最もよく増殖した。一方、本株が形成するクリアゾーンは、低温域(15℃)で最も大きくなった。これらの結果は、JKCM-AJ-6,1α 株は中温性であるが、JKCM-AJ-6,1α 株の生産する酵素は熱に対して安定が低い(熱不安定性)ことを示唆している。このことは、一般的に海洋細菌の生産する酵素が熱不安定性であるという特徴と一致している[166, 167]。このような、海洋生酵素の熱不安定性は、海洋平均温度[168]が地圏平均温度と比較して相対的に低いことが原因であると考えられている。一方、地圏環境から単離された細菌の P(3HB)分解酵素の多くは、中温領域で安定であることが報告されている[78, 169]。
Table 13. Effect of temperature on the growth and clear zone formation on the P(3HB) emulsified plates of strain JKCM-AJ-6.1α.

<table>
<thead>
<tr>
<th>Temperature(°C)</th>
<th>JKCM-AJ-6.1α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>++</td>
</tr>
<tr>
<td>30</td>
<td>+++</td>
</tr>
<tr>
<td>37</td>
<td>+++</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
</tr>
</tbody>
</table>

+++: means growth was excellent, or a large clearing zone was formed.
++: means growth was good, or a medium clearing zone was formed.
+: means growth was poor, or a small clearing zone was formed.
−: means not growing, a clearing zone was not formed.

2-2-5 各種ポリエステルおよびオリーブオイルの分解能力

Table 14 に、JKCM-AJ-6,1α 株の種々のポリエステル、およびオリーブオイル乳化培地上でのクリアゾーン形成能を示す。本株は、P(3HB)および P(3HB-co-3HV)に対して分解活性を示した。一方で、PCL およびオリーブオイルを含む培地上ではクリアゾーンを形成しなかった。これらの結果から、JKCM-AJ-6,1α 株は P(3HB)分解酵素を生産するが、リパーゼを生産しないことが示唆された。

Table 14. Effect of temperature on the clear zone formation on various polyester or olive oil emulsified plates of strain JKCM-AJ-6.1α.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Growth temperature (°C)</th>
<th>15</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(3HB)</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>P(3HB-co-3HV)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLA</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCL</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBAT</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEsu</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBSu</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive oil</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+++: means a medium clearing zone was formed.
+: means a small clearing zone was formed.
−: means a clearing zone was not formed.
炭素源の菌体増殖および培養上清の活性への影響

Table 15 に、さまざまな炭素源を含む終濃度 0.2M NaCl のミネラル培地および 0.2M NaCl に調整された栄養培地中での JKCM-AJ-6,1α 株の増殖程度および培養上清の P(3HB)分解活性を示す。JKCM-AJ-6,1α 株は、10 種類の炭素源のうち、P(3HB), (R)-3-ヒドロキシブタン酸, D-グルコース, コハク酸および乳酸の存在下で良好な増殖を示した。また、本株は、P(3HB)および(R)-3-ヒドロキシブタン酸の存在下で P(3HB)分解酵素活性を発現した。このことから、P(3HB)および P(3HB)の分解物である(R)-3-ヒドロキシブタン酸が本株の P(3HB)分解酵素の発現誘導に関与していることが示唆された。さらに、栄養培地中の P(3HB)を添加した場合、あるいはグルコースと P(3HB)を同時に炭素源として用いた場合は、P(3HB)を単一の炭素源として用いた場合と比較して、本株の P(3HB)分解酵素活性が低下した。この結果は、グルコースなどの易資化性物質(炭素)が存在する場合、本株がそれらを先に利用するため P(3HB)分解酵素発現を抑制されることを示唆している。

<table>
<thead>
<tr>
<th>炭素源</th>
<th>菌体増殖</th>
<th>P(3HB)分解酵素活性 (U/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(3HB) + MM(0.2)</td>
<td>++</td>
<td>0.047</td>
</tr>
<tr>
<td>(R)-3-Hydrobutyric acid + MM(0.2)</td>
<td>++</td>
<td>0.031</td>
</tr>
<tr>
<td>(S)-3-Hydrobutyric acid + MM(0.2)</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>α-Glucose + MM(0.2)</td>
<td>+++</td>
<td>0.017</td>
</tr>
<tr>
<td>α-Glucose + P(3HB) + MM(0.2)</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>Succinic acid + MM(0.2)</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>Lactic acid + MM(0.2)</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>α-Sorbitol + MM(0.2)</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Adipic acid + MM(0.2)</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>α-Mannose + MM(0.2)</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Succrose + MM(0.2)</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>NM(0.2)</td>
<td>+++</td>
<td>0.008</td>
</tr>
<tr>
<td>P(3HB) + NM(0.2)</td>
<td>+++</td>
<td>0.008</td>
</tr>
<tr>
<td>None + MM(0.2)</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

+++: means growth was excellent.
++: means growth was good.
+: means growth was poor.
a MM(0.2): mineral medium supplemented with 0.2M NaCl.
b NM(0.2): nutrient medium supplemented with 0.2M NaCl.
c None: without carbon source.
d The activities were determined by turbidimetric method with P(3HB) granules.
2.2-7 P(3HB)フィルムの分解

JKCM-AJ-6,1α株によるP(3HB)フィルムの重量減少量を経時的に調べた。P(3HB)フィルムを含む終濃度0.2M NaClの液体栄養培地およびミネラル培地中で、JKCM-AJ-6,1α株を5, 10, 15および20日間、15°Cで培養した後、フィルムを取り出して重量減少量を評価した。Figure 10に示すように、本株によるフィルムの重量減少量は、栄養培地中と比較して、ミネラル培地中の方が、大きかった。Table 16に、栄養培地およびミネラル培地中でJKCM-AJ-6,1α株を培養時の最大菌体増殖度およびP(3HB)分解活性を示している。JKCM-AJ-6,1α株は、栄養培地では、低栄養のミネラル培地中での増殖度の約3倍程度増殖した。一方で、本株によるP(3HB)フィルム分解活性は、栄養培地と比較して、ミネラル培地中では、約2.9倍の大きさであった。すなわち、このことは、他のP(3HB)分解菌と同様に、易資源性栄養の存在下において、本株のP(3HB)分解活性発現が抑制されることを示唆している[170, 171]。

![Figure 10. The biodegradation of P(3HB) film blended with strain JKCM-AJ-6,1α. P(3HB) film (10×10×0.15mm) was incubated with strain JKCM-AJ-6,1α at 15°C in the nutrient and mineral medium with NaCl supplemented to a final concentration of 0.2 M. Weight loss of P(3HB) film after degradation by strain JKCM-AJ-6,1α in the nutrient medium (◆), Weight loss of P(3HB) film after degradation by strain JKCM-AJ-6,1α in the mineral medium (□); control(▲).](image)

<p>| Table 16. P(3HB) film degradation by strain JKCM-AJ-6,1α grown on 2 types of media:NM(0.2) and MM(0.2). |
|---|-------------|</p>
<table>
<thead>
<tr>
<th>Media</th>
<th>Growth</th>
<th>Rate of P(3HB) film degradation (μg/cm²/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(3HB) film + NM(0.2)</td>
<td>1.6</td>
<td>16</td>
</tr>
<tr>
<td>P(3HB) film + MM(0.2)</td>
<td>0.49</td>
<td>47</td>
</tr>
</tbody>
</table>

a the growth levels after incubation at 15°C for 10 days were evaluated by OD650.
b these values indicate the average rates of the film weight losses for incubation for 10 days.
c MM: mineral medium supplemented with 0.2M NaCl.
d NM: nutrient medium supplemented with 0.2M NaCl.
第3章
海洋性 *Shewanella* 属細菌由来の熱不安定性
P(3HB)分解酵素の特徴付け
3-1 実験方法

3-1-1 試薬
参照。

3-1-2 培地
実験で使用したM9培地の組成をTable 17に示す。他の培地および調整方法は2-1-2参照。

<table>
<thead>
<tr>
<th>Table 17. The composition of M9 medium(pH7.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH₂PO₄</td>
</tr>
<tr>
<td>Na₂HPO₄・12H₂O</td>
</tr>
<tr>
<td>NH₄Cl</td>
</tr>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>Plysurf</td>
</tr>
<tr>
<td>P(3HB)</td>
</tr>
<tr>
<td>1M MgSO₄²⁻</td>
</tr>
<tr>
<td>2M Glucose⁺</td>
</tr>
<tr>
<td>1% Thiamine⁺</td>
</tr>
<tr>
<td>1M CaCl₂⁺</td>
</tr>
</tbody>
</table>

*Addition after autoclaved

3-1-3 微生物、ベクターおよびプライマー
実験で使用した微生物、ベクターおよびプライマーをTable 18に示す。プライマーの位置をFigure 11に示す。
Table 18. Strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strains or plasmids</th>
<th>Relevant characteristic</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli DH5α</td>
<td>F′, Φ80d lacZAM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(λrK− mK+), pHoA, supE44, h-596, relA1</td>
<td>Takara</td>
</tr>
<tr>
<td>E. coli BL21(DE3)</td>
<td>F′, ompT, hsdR17(λrK− mK+), glnV1857, ind1, Sam7, nin5, lacUV5-T7 gene1, dcm(DE3)</td>
<td>Takara</td>
</tr>
<tr>
<td>JKCM-AJ-6,1α</td>
<td>Wild type, the strain has P(3HB)-degrading activity.</td>
<td>This study</td>
</tr>
<tr>
<td>JKCM-AJ-6,1α-D</td>
<td>phaZshe::Tn5, Km', the strain lost in P(3HB)-degrading activity.</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pUC18</td>
<td>Cloning vector; Amp'</td>
<td>Takara</td>
</tr>
<tr>
<td>pUC18-6000</td>
<td>pUC18 carrying EcoRI/EcoRI fragment of gDNA containing phaZshe</td>
<td>This study</td>
</tr>
<tr>
<td>pMD20-2049-kan</td>
<td>Disruption vector; Amp', Km'</td>
<td>This study</td>
</tr>
<tr>
<td>pColdIV</td>
<td>pMB1 replica, expression vector; Amp'</td>
<td>Takara</td>
</tr>
<tr>
<td>pColdIV2049</td>
<td>pColdIV carrying NdeI/BamHI fragment of phaZshe</td>
<td>This study</td>
</tr>
<tr>
<td>Primers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>she03F</td>
<td>GTNCCNGAYGCNATGAAAYAA</td>
<td>This study</td>
</tr>
<tr>
<td>she08R</td>
<td>GCRTTYTGYTGRTRRTARCA</td>
<td>This study</td>
</tr>
<tr>
<td>She17</td>
<td>TAAATCACGCTGCGACTTACCGCGGTAGCTAC</td>
<td>This study</td>
</tr>
<tr>
<td>She18</td>
<td>ATTAATGCTGCGCTGCAATAGGCCAACACGAC</td>
<td>This study</td>
</tr>
<tr>
<td>She19</td>
<td>AAGTGTGAGCTGCGATGCTGCGAC</td>
<td>This study</td>
</tr>
<tr>
<td>She20</td>
<td>CTGAGCGCCATGAATAGGCAGGCTACAGCT</td>
<td>This study</td>
</tr>
<tr>
<td>She23</td>
<td>ATGGCAAGGCCGACACTACGGTCACACT</td>
<td>This study</td>
</tr>
<tr>
<td>She24</td>
<td>AGCTGACTCGCTTTACTTCTAGGCTCAG</td>
<td>This study</td>
</tr>
<tr>
<td>She25</td>
<td>CCGTGGATTGCGATGCTGACACCGAATCTC</td>
<td>This study</td>
</tr>
<tr>
<td>She26</td>
<td>ATAGTGACCACGCGATGCGGACATCCGC</td>
<td>This study</td>
</tr>
<tr>
<td>She27</td>
<td>TTAGTTCTCTGCGACAGTCGACCGCAGCA</td>
<td>This study</td>
</tr>
<tr>
<td>She28</td>
<td>ATGTCTCTCCGCAAGACCGAAGCGCCAGTA</td>
<td>This study</td>
</tr>
<tr>
<td>She29</td>
<td>TGCAATTGCTTGCGGTCGAGTATGCGGCA</td>
<td>This study</td>
</tr>
<tr>
<td>She30</td>
<td>TGATTCTCTCTGCGCAATTACAGGGAC</td>
<td>This study</td>
</tr>
<tr>
<td>She31</td>
<td>ATTAGGTGAGCCCTACCCCCGCTAGTC</td>
<td>This study</td>
</tr>
<tr>
<td>She32</td>
<td>AGTCCATATAAGAACCACCCTAAGCGCTCAG</td>
<td>This study</td>
</tr>
<tr>
<td>She33</td>
<td>AGGCAAATACGCGGACTGCAAAATTCCTGCT</td>
<td>This study</td>
</tr>
<tr>
<td>She34</td>
<td>TAGACGAGCTGACGATTGCGATTGTTGCTG</td>
<td>This study</td>
</tr>
<tr>
<td>She35</td>
<td>TGAGGCTTGCGACCACGCGAAGCGCCAGTA</td>
<td>This study</td>
</tr>
<tr>
<td>She36</td>
<td>TGCCATCGGCAACCCATGACATTGCGACAGCT</td>
<td>This study</td>
</tr>
<tr>
<td>She37</td>
<td>ACCATAAAGCTGCGCTTTTGGTATACGAACCTA</td>
<td>This study</td>
</tr>
<tr>
<td>She38</td>
<td>ATACCACCTACCCAGGCTTACTTCTGACTT</td>
<td>This study</td>
</tr>
<tr>
<td>She39</td>
<td>AGGTTGCGCACAAATAGGCTCAAAGCGACATGCT</td>
<td>This study</td>
</tr>
<tr>
<td>She40</td>
<td>TTATAGGGTGCGGCAATATACCTGATTTTA</td>
<td>This study</td>
</tr>
<tr>
<td>She42</td>
<td>TGAACGTACTCGGCGATCGTCTCGTGCAGAA</td>
<td>This study</td>
</tr>
<tr>
<td>She43</td>
<td>TTAAGGCGGAAGCGTTTTGGCGGTACCGGGA</td>
<td>This study</td>
</tr>
<tr>
<td>SheD-f</td>
<td>ATTTTTGCGGACGATCCATGCGGTATTGCCAGCGCAAGCTGACATT</td>
<td>This study</td>
</tr>
<tr>
<td>SheD-r</td>
<td>TGGCAAAAGCGAATCTTCTCATATGGCAATAGTCAACGCTGCGG</td>
<td>This study</td>
</tr>
<tr>
<td>pJB861-Bam</td>
<td>CGATGATCCCTCGGCAAATCTTCTGATATGCGGCA</td>
<td>This study</td>
</tr>
<tr>
<td>pJB861-Eco</td>
<td>TATGGAATTCCGTTTGCCGCTAATACGGAC</td>
<td>This study</td>
</tr>
<tr>
<td>pColdIV2049</td>
<td>pColdIV carrying NdeI/BamHI fragment of phaZshe</td>
<td>This study</td>
</tr>
</tbody>
</table>

Figure 11. Position of primers used for phaZshe.

Kbp 0 1 2 3 4 5 6

She34 She33 She32 She31 She30 She29 She28 She27 She26 She25 She24 She23 She22 She21 She20 She19 She18 She17 She16 She15 She14 She13 She12 She11 She10 She9 She8 She7 She6 She5 She4 She3 She2 She1 She0
JKCM-AJ-6,1α株の菌体外P(3HB)分解酵素遺伝子のクローニング

ゲノムDNA抽出は2-1-5参照。サザンハイブリダイゼーションは、Southernの方法[172]に準拠して行われた。サザンハイブリダイゼーションに用いたバッファーおよび溶液の組成をTable 19に示す。

Table 19. The composition of buffer and solution.

<table>
<thead>
<tr>
<th>Buffer/Protein</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maleic acid buffer (pH 7.5)</td>
<td>Maleic acid: 116 g/L, NaCl: 88 g/L</td>
</tr>
<tr>
<td>20x SSC buffer (pH 7.0)</td>
<td>Sodium citrate: 88 g/L, NaCl: 176 g/L</td>
</tr>
<tr>
<td>Washing buffer</td>
<td>10x Maleic acid buffer: 100 mL/L, Tween 20: 3 mL/L</td>
</tr>
<tr>
<td>Hybridization buffer</td>
<td>20x SSC buffer: 250 mL/L, 1% N-lauryl sarcosine: 100 mL/L, 10% SDS: 2 mL/L, skim milk: 40 g/L</td>
</tr>
<tr>
<td>Blocking solution</td>
<td>10x Maleic acid buffer: 50 mL/L, skim milk: 20 g/L</td>
</tr>
</tbody>
</table>

JKCM-AJ-6,1α株近縁種のP(3HB)分解酵素遺伝子(accession nos.: ABI41661, ABI40356, EGM70854, EGM76427)から設計されたオリゴDNAをプライマーとしてJKCM-AJ-6,1α株のゲノムDNAをテンプレートして、PCRにより目的配列を增幅した(Table 20)。その後、電気泳動を行い、400bpの目的遺伝子部分を切り出し、スピンカラムを用いて精製した。また、エタノール沈殿を行い、13μLの滅菌超純水で溶かした後、その中の3μLを電気泳動でチェックした。その後10μL(1μg)のサンプルに6μLの滅菌超純水を加えて10分間98℃で加熱して変性した後、氷水中で急冷して4μL DIG High Prime (Enzo社製)を加えてよく混合し、37℃で一晩静置保温した。その後、2μL 0.2M EDTA溶液(pH8.0)を加え、10分間65℃で加熱して反応を終了した後-20℃で保存した。使用する前に10分間98℃で加熱した後、氷水中で急冷した。DIGラベリングの確認を、以下の手順で行った。サンプルを10^-5倍希釈してメンブレンに1μLずつプロットしたメンブレンをろ紙で挟み、80℃で60分間、オーブンでのベイキングによりDNAを固定させ、抗体反応・発色反応により、シグナル強度を確認し、ラベリング効率を判断した。

Table 20. PCR experiment.

<table>
<thead>
<tr>
<th>Thermal cycles</th>
<th>PCR condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>94℃ 10 min(pre heat)</td>
<td>Template gDNA (50 ng/μL): 2 μL, Primer she 03F: 2 μL, Primer she 08R: 2 μL, 10x ThermoPol Reaction Buffer: 5 μL, dNTP: 4 μL, Deep Vent: 0.2 μL, ddH2O: 34.8 μL, Total: 50 μL</td>
</tr>
<tr>
<td>66℃ 30 sec.</td>
<td>25 cycles</td>
</tr>
<tr>
<td>72℃ 40 sec.</td>
<td>↓</td>
</tr>
<tr>
<td>4℃ ∞</td>
<td>↓</td>
</tr>
</tbody>
</table>
さらに、10 μg のゲノム DNA を制限酵素 BamHI, EcoRI, HindIII, SphI および PstI で一晩保温した後、失活処理した。その後、10 分間 55°C で保温し、室温で 20 分間徐冷の熱処理を三回繰り返した。サンプルは、60V/10cm gel で 2 時間 30 分間、アガロース電気泳動された。泳動が終了したゲルを、0.25N HCl で 15 分間処理(depurination)した後、超純水で洗浄した。その後、0.5M NaOH に 30 分間処理(DNA 変性)した。ゲルからメンブレンへの DNA 転写は、Model 785 Vacuum Blotter (BioRad 社製)を用いて行われた。メンブレンフィルターとして、ニュートラボンドプラスチャージ(アマシャム社製)を用いた。転写手順は、マニュアルに従い標準法で行われた。

ゲノム DNA と EcoRI を制限酵素処理した後、Annealing で電気泳動を行った。その後、サザンハイブリダイゼーションの結果により、ゲルから 6500 bp と 4000 bp 間の DNA 断片を切り出し、目的の DNA 断片を回収した。その後、DNA を同じ制限酵素で処理されたプラスミド DNA, pUC18 を DNA T4 ligase を混合し 16°C で一晩保温し、連結した(Table 21)。新たに構築した組換えプラスミドを pUC18-6000 と命名した。10 μL (500 ng) の組換えプラスミドを用いて 100 μL のコンピペットセル(E. coli DH5α)に導入した。組換え大腸菌を X-Gal (10 μg/mL), IPTG (0.1mM), およびアンピシリン (50 μg/mL)を含む LB 固体培地上に塗布した。白色コロニーを滅菌爪楊枝で突き、IPTG (0.1mM), およびアンピシリン (50 μg/mL)および 0.2% P(3HB)を含む M9 固体培地上に画線した。30°C でクリアゾーンを形成するまで保温した。クリアゾーンを形成した株を選抜した。プラスミドはアルカリ法[148]を用いて抽出した。得られたプラスミドをテンプレートにして、ダイターミネーター法によりシークエンシングサンプルを作製した。シークエンシング解析は、オペロンバイオテクノロジー株式会社に外注した。使用プライマーを Table 18 および Figure 11 に示した。塩基配列および相同性解析は、プログラム GENETYX あるいはプログラム tblastx (http://www.ncbi.nlm.nih.gov/blast)を用いて行われた。

<table>
<thead>
<tr>
<th>Table 21. Ligation mixture (total 10 μL).</th>
</tr>
</thead>
<tbody>
<tr>
<td>10× T4 Ligation Buffer</td>
</tr>
<tr>
<td>T4 DNA Ligase</td>
</tr>
<tr>
<td>pUC18 (500 ng/μL)</td>
</tr>
<tr>
<td>DNA fragmentation</td>
</tr>
<tr>
<td>ddH2O</td>
</tr>
</tbody>
</table>
3-1-5 P(3HB)分解酵素の遺伝子破壊

遺伝子破壊は，Smithらの方法[173]に準拠して行われた。P(3HB)分解酵素遺伝子上流を(a)，下流を(b)，pJB861由来カナマイシン耐性遺伝子を(c)とし，(各フラグメントのマップをFigure 12に示す)下記(Figure 12)のプライマーの組み合わせによりこれらの遺伝子断片を得た。遺伝子破壊用プラスマドの作製は3つのステップにより行われた(Figure 13)。ステップ1では，1st PCR (Table 22)によって(a)，(b)および(c)フラグメントを増幅し，これらをHetero duplex法によりつなげた(a)+(c)フラグメントを形成させた(1st Hetero Duplex，Table 23)。ステップ2では，PCRによって(a)+(c)フラグメントを増幅した(2nd PCR，Table 24)。そのPCR産物を電気泳動し，目的のバンドをゲルから切り出し，エタノール沈殿後，ステップ1同様にHetero duplex法をもちいて(a)+(c)+(b)フラグメントを形成させた(2nd Hetero Duplex，Table 23)。ステップ3では2nd Hetero Duplex産物を滅菌超純水で50倍に希釈した。この希釈液をテンプレートとしてPCRを行い(3rd PCR，Table 24)，得られたPCR産物をpMD20 vectorに連結した。ライゲーションはPCR産物3 µL，pMD20 vector1 µL, buffer1 µL, T4 DNA ligase1 µL, ddH2O4 µLの10 µLの系で行われた。塩化カルシウム法を用いて，組換えプラスマドをE.coli DH5αに形質転換した。これをX-Gal (10 µg/mL)，IPTG (0.1mM)およびアンピシリン (50 µg/mL)を含むLB固体培地上に組換え大腸菌株を塗布し，37°Cで培養した。その後，出現した白色コロニーを滅菌爪楊枝で突き，カナマイシン(50 µg/mL)を含むLB固体培地上に画線し，37°Cで培養した。これによりカナマイシン耐性株を選択した。

![Figure 12. Position of primers used for PCR.](image)
Step 1

1st PCR

1st Hetero Duplex

(a) + (c) → (b)

↓ 2nd PCR

2nd Hetero Duplex

(a) + (c) + (b)

Step 2

↓ 2nd PCR

2nd Hetero Duplex

(a) + (c) + (b)

Step 3

↓ 3rd PCR

Hetero Duplex condition

Thermal cycles

1st PCR condition

<table>
<thead>
<tr>
<th>Template (40 ng/μL)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>98°C</th>
<th>10 min (pre heat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer She20 (10pmol)</td>
<td>1 μL</td>
<td>-</td>
<td>-</td>
<td>94°C</td>
<td>30 sec.</td>
</tr>
<tr>
<td>Primer SheD-f (10pmol)</td>
<td>1 μL</td>
<td>-</td>
<td>-</td>
<td>58°C</td>
<td>30 sec.</td>
</tr>
<tr>
<td>Primer SheD-r (10pmol)</td>
<td>-</td>
<td>1 μL</td>
<td>-</td>
<td>72°C</td>
<td>1 min 30 sec.</td>
</tr>
<tr>
<td>Primer pJB861-Bam (10pmol)</td>
<td>-</td>
<td>-</td>
<td>1 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x PrimerSTAR Buffer</td>
<td>12.5 μL</td>
<td>12.5 μL</td>
<td>12.5 μL</td>
<td>4°C</td>
<td>∞</td>
</tr>
<tr>
<td>dNTP</td>
<td>2 μL</td>
<td>2 μL</td>
<td>2 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrimerSTAR DNA polymerase</td>
<td>0.1 μL</td>
<td>0.1 μL</td>
<td>0.1 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ddH₂O</td>
<td>7.4 μL</td>
<td>7.4 μL</td>
<td>7.4 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>25 μL</td>
<td>25 μL</td>
<td>25 μL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 23. 1st and 2nd Hetero Duplex condition.

<table>
<thead>
<tr>
<th>Hetero Duplex condition</th>
<th>1st</th>
<th>2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st PCR product (a) (400 ng/μL)</td>
<td>1 μL</td>
<td>-</td>
</tr>
<tr>
<td>1st PCR product (c) (400 ng/μL)</td>
<td>1 μL</td>
<td>-</td>
</tr>
<tr>
<td>1st PCR product (b) (400 ng/μL)</td>
<td>-</td>
<td>1 μL</td>
</tr>
<tr>
<td>2nd PCR product (400 ng/μL)</td>
<td>-</td>
<td>1 μL</td>
</tr>
<tr>
<td>2x PrimerSTAR Buffer</td>
<td>12.5 μL</td>
<td>12.5 μL</td>
</tr>
<tr>
<td>dNTP</td>
<td>2 μL</td>
<td>2 μL</td>
</tr>
<tr>
<td>*PrimerSTAR DNA polymerase</td>
<td>0.1 μL</td>
<td>0.1 μL</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>8.4 μL</td>
<td>8.4 μL</td>
</tr>
<tr>
<td>Total</td>
<td>25 μL</td>
<td>25 μL</td>
</tr>
</tbody>
</table>

Table 24. 2nd and 3rd PCR condition.

<table>
<thead>
<tr>
<th>PCR condition</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Hetero Duplex product</td>
<td>1 μL</td>
<td>-</td>
</tr>
<tr>
<td>2nd Hetero Duplex product (50x dilution)</td>
<td>-</td>
<td>1 μL</td>
</tr>
<tr>
<td>Primer She20 (10 pmol)</td>
<td>1 μL</td>
<td>1 μL</td>
</tr>
<tr>
<td>Primer pJB861-Eco (10 pmol)</td>
<td>1 μL</td>
<td>-</td>
</tr>
<tr>
<td>Primer She36 (10 pmol)</td>
<td>-</td>
<td>1 μL</td>
</tr>
<tr>
<td>2x PrimerSTAR Buffer</td>
<td>12.5 μL</td>
<td>12.5 μL</td>
</tr>
<tr>
<td>10x Ex Taq Buffer</td>
<td>-</td>
<td>2.5 μL</td>
</tr>
<tr>
<td>PrimerSTAR DNA polymerase</td>
<td>0.1 μL</td>
<td>-</td>
</tr>
<tr>
<td>Ex Taq</td>
<td>-</td>
<td>0.1 μL</td>
</tr>
<tr>
<td>dNTP</td>
<td>2 μL</td>
<td>2 μL</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>7.4 μL</td>
<td>17.4 μL</td>
</tr>
<tr>
<td>Total</td>
<td>25 μL</td>
<td>25 μL</td>
</tr>
</tbody>
</table>
カナマイシン耐性株からプラスミドを抽出し、得られたプラスミド(pMD20-2049-kan)を用いて野生株JKCM-AJ-6,1α株のゲノムDNA上の目的遺伝子を破壊した(Figure 20A)。前培養したJKCM-AJ-6,1α株を10mLのLB培地に植菌し、50mLファルコンチューブを用いて25℃で1日培養した。4℃、5000rpm、10分間遠心し、菌体を洗浄した。これに4℃の滅菌超純水10mLを加え、ボルテックスミキサーを用いて菌体を再懸濁させた。再び4℃、5000rpm、10分間遠心し菌体を洗浄した。これに4℃の滅菌超純水2mLを加え懸濁させた。pMD20-2049-kan1µL(1g/L)をあらかじめ冷やしておいたマイクロチューブに入れ、40µLのJKCM-AJ-6,1α株懸濁液を加え、氷上で混合した。この混合液全量をあらかじめ冷やしておいたエレクトロポレーターにセットした。5ms、1700Vで電圧をかけ、すぐに冷やしておいたLB培地1mLを加えてピペッティングした。キュベット内の混合液を回収し、LB培地に戻して4℃で1時間振とう培養した。その後、5000rpm、10分遠心して、菌体を洗浄し、カナマイシン(25µg/mL)を含むLB固体培地上に塗布した。37℃、24時間培養を行った。出現したコロニーを滅菌爪楊枝で突き、カナマイシン(50µg/mL)を含むLB固体培地上に画線し、37℃で24時間培養した。その後、得られたカナマイシン耐性株に対して、カナマイシン(50µg/mL)を含むP(3HB)乳化培地上でクリアゾーン試験を行った。クリアゾーンを形成しないカナマイシン耐性菌を選択した。

3-1-6 P(3HB)分解酵素(PhaZshe)の精製

野生株(JKCM-AJ-6,1α株)由来の酵素(wPhaZshe)の精製は、Miyazakiらの方法[174]に準拠して行われた。LB培地200mLに、JKCM-AJ-6,1α株を植菌し、15℃で50時間振とう培養した。この培養液を、5mL/Lの割合で、液体培地(Table25)に植えかえ、15℃で50時間振とう培養した。培養液を遠心分離(6000rpm、20min、4℃)し、上清を回収した。酵素の精製方法は、以下の手順で行った。上清に、0.5Mとなるように硫酸アンモニウムを加えた。これを予め0.5M硫酸アンモニウムを含む10mMリン酸緩衝液(pH7.5)で平衡化したButyl-Toyopearlカラム(疎水性クロマト担体、TOSHO製)に吸着させた。次に10mMリン酸緩衝液を20mL流した後、0.5M硫酸アンモニウムの割合を100-0%に減少させ、エタノールの割合を0-40%に変化させて、酵素を溶出させた。P(3HB)分解活性のある画分を集め、所定の緩衝液中で透析した後、AQUA KEEPM(吸水性ポリマー、住友化学工業)を用いて濃縮した。濃縮した酵素を4℃で保存した。

<table>
<thead>
<tr>
<th>Table 25. The composition of media for enzyme expression (pH7.5).</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH2PO4</td>
</tr>
<tr>
<td>NaHPO4・12H2O</td>
</tr>
<tr>
<td>MgSO4・7H2O</td>
</tr>
<tr>
<td>FeCl3・6H2O</td>
</tr>
<tr>
<td>CaCl2・2H2O</td>
</tr>
<tr>
<td>NH4Cl</td>
</tr>
<tr>
<td>P(3HB)</td>
</tr>
</tbody>
</table>
大腸菌内で組換え酵素を生産するため、phaZShe含むプラスミドを構築した。使用するプライマーの位置をFigure 14に示す。pUC18-6000をテンプレートとして目的遺伝子をPCRにより増幅した（Table 26）。増幅したDNAは、制限酵素NdeIおよびBamHIを用いて切断された。その後、DNAを同じ制限酵素で処理されたプラスミドDNA、pCold IVをDNA T4ligaseで連結した。新たに構築した組換えプラスミドをpCold-2049と命名した。10μL（300ng）の組換えプラスミドを塩化カルシウム法によりE.coliDH5αに導入した。組換え大腸菌をアンピシリン（50μg/mL）を含むLB固体培地上に塗布した。白色コロニーを滅菌爪楊枝で突き、IPTG（0.1mM）、およびアンピシリン（50μg/mL）を含むM9P(3HB)乳化培地上に画線した。37°Cで一晩保温した後、15°Cでクリアゾーンを形成するまで保温した。また、クリアゾーン形成株を選択し、プラスミドを抽出した。

Table 26. PCR experiment.

<table>
<thead>
<tr>
<th>PCR condition</th>
<th>Thermal cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer pCold-f 2μL</td>
<td>94°C 30 sec.</td>
</tr>
<tr>
<td>Primer pCold-r 2μL</td>
<td>62°C 30 sec.</td>
</tr>
<tr>
<td>2x PrimerSTAR GC Buffer 25μL</td>
<td>72°C 2min 30 sec.</td>
</tr>
<tr>
<td>dNTP 4μL</td>
<td></td>
</tr>
<tr>
<td>PrimerSTAR HS DNA Polymerase 0.5μL</td>
<td></td>
</tr>
<tr>
<td>ddH2O 15.5μL</td>
<td></td>
</tr>
<tr>
<td>Total 50μL</td>
<td>4°C ∞</td>
</tr>
</tbody>
</table>

Figure 14. Position of primers used for phaZShe.
得られたプラスミド pCold-2049 を用いて大腸菌 DH5α または BL21 に形質転換した。形質転換した大腸菌株は、アンピシリン (50 μg/mL) を含む M9 培地に植菌し、30°C で OD600 0.5 まで培養した。その後、濃度 0.5mM となるように IPTG を入れ、15°C で 48 時間振とう培養した。その後、酵素の精製は野生株と同様の手順を行った。大腸菌 DH5α および大腸菌 BL21 に発現した P(3HB) 分解酵素を、rdPhaZshe および rbPhaZshe と命名した。

3-1-7 P(3HB)分解活性測定（濁度法）
2-1-14 参照

3-1-8 タンパク質の分析

Laemmli 法 [175] により、Sodium dodecyl sulfate-ポリアクリルアミドゲル電気泳動 (SDS-PAGE)を行った。電気泳動後のタンパク質を、Coomassie Brilliant Blue R-250 (CBB R-250) 法を用いて染色した。分子量の基準には、プレステインドマーカー LOW(アプロサイエンス社製) を用いた。タンパク質濃度を、Bradford 法 [176] (Bio-Rad Protein Assay) により、牛血清アルブミン (BSA) を標準物質として決定した。また、以下の手順で、酵素を活性染色法により解析した（ザイモグラム法）。酵素に 6xSDS 試料変性液 (Table 27) を加え、37°C で 10 分変性させた。この試料を P(3HB) 微粒子を含む SDS-ポリアクリルアミドゲル中で電気泳動した。電気泳動は、4°C で行われた。泳動後、ゲルを、0.3 M の NaCl を添加した 0.01 M リン酸ナトリウム緩衝液 (pH 7.5) に浸し、37°C で 5 時間保温した。酵素の存在する箇所はクリアゾンとして検出された。

Table 27. The composition of 6× SDS sample buffer (pH6.8).

<table>
<thead>
<tr>
<th>Tris-HCl</th>
<th>0.375 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol</td>
<td>60%</td>
</tr>
<tr>
<td>SDS</td>
<td>12%</td>
</tr>
<tr>
<td>Bromophenol Blue</td>
<td>0.06%</td>
</tr>
<tr>
<td>Dithiothreitol (DTT)</td>
<td>0.6 M</td>
</tr>
</tbody>
</table>
3-1-9 Na⁺濃度、pHおよび温度の活性への影響

0.0-1.0M Na⁺濃度調整したP(3HB)基質溶液に酵素(wPhaZshe,またはrbPhaZshe)を加えた。Na⁺濃度の酵素活性への影響を濁度法によって評価した。pH2.0-10.5の0.1M各種バッファー（グリシン、クエン酸ナトリウム、リン酸ナトリウム、トリス-塩酸、ホウ酸ナトリウム）に、等量の酵素溶液を添加し、4℃で5時間保持した。その後、混合溶液の残存活性を各々の酵素の至適Na⁺濃度にて、濁度法により測定し酵素のpH安定性を評価した。pH2.0-10.5の1M各種バッファー（同上）100μLに、精製したP(3HB)微粒子を基質として懸濁液を加え、超純水で1mLを調整した。その後、酵素を添加し、各々の酵素の至適Na⁺濃度にて活性を測定し、酵素の至適pHを評価した。酵素を、0.01Mリン酸緩衝液中(pH7.5)，4-80℃の一定温度で30分間保持した。その後、酵素溶液の残存活性を各々の酵素の至適Na⁺濃度にて濁度法により測定し、酵素の温度安定性を評価した。

3-1-10 各金属イオンの濃度および阻害剤における活性の影響

さまざまな濃度の各種金属イオン（CaCl₂、MgCl₂、MnCl₂KClあるいはFeCl₃）または各種阻害剤[Diisopropyl fluorophates（DFP）、Diazoacetyl-DL-norleucine methyl ester（DAN）、Phenylmethane sulfonyl fluoride（PMSF）、Tosyl-L-phenylalanine Chloromethyl ketone（TPCK）、Dithiothreitol（DTT）、Ethylendiaminetetraacetic acid（EDTA）、Tween 20あるいはsodium dodecyl sulfate（SDS）]をP(3HB)基質溶液に加えた後、wPhaZshe、またはrbPhaZsheを加えた。その後、酵素活性を、各々の酵素の至適Na⁺濃度にて濁度法により測定した。

3-1-11 基質特異性

10mMリン酸バッファー（pH7.4）3mLにポリエステルフィルム（10×10×0.15mm）と酵素を加え、15℃で48時間保温した。その後、フィルムをメタノールと超純水で洗浄し、真空乾燥した後、秤量した。フィルムの重量減少量を、2-1-16と同様の方法で算出した。

3-1-12 速度論的解析

精製酵素の分解の速度論的解析を行った。P(3HB)基質とする濁度法により、基質分解速度を測定した。P(3HB)の酵素加水分解速度（R）は、(3)式を用いて決定された。

\[R = k_s [E]/(1 + K[E])^2 \] (3)

ここで、\(k_s \) は酵素によるP(3HB)鎖の加水分解速度定数、\(K \) は酵素の見掛けの吸着平衡定数、\([E]\)は酵素濃度を示している。Excel (Microsoft Corp., Bellevue, WA, USA)を用いて、速度論データを解析した。
3-2 結果と考察

3-2-1 JKCM-AJ-6.1α 株の菌体外P(3HB)分解酵素遺伝子のクローニング

Shewamella属細菌の推定P(3HB)分解酵素タンパク質に基づいて設計された縮退DNAプライマー（she03Fおよびshe08R）を用いて、JKCM-AJ-6.1α株のゲノムDNAをテンプレートとしてPCRしたところ、400bpのDNA断片が得られた。この断片をシークエンシング解析したところ、P(3HB)分解酵素遺伝子の一部をコードしていることが判明した。この断片にジオキシゲニン（DIG）をラベルしたものをプロープとして、JKCM-AJ-6.1α株のゲノムDNAに対して、サザンハイブリダイゼーション解析を行った。その結果、図15に示すように、制限酵素EcoRIにより消化された約6000bpのゲノムDNA断片とDNAプロープがハイブリッド形成した。また、制限酵素HindIII消化された約5500bpのゲノムDNA断片もDNAプロープとハイブリッド形成した。前者を、アガロースゲルより分取し、EcoRI処理したpUC18に連結した。E.coliDH5αに、この連結DNAを導入し、ゲノムのサプライブラリーを構築した。サプライブラリーを含む形質転換体を、P(3HB)を含むM9培地上に塗布したところ、コロニー周辺にクリアゾーンを形成する株を検出した。この株より、目的のphaZShe遺伝子を含むプラスマドDNA（pUC18-6000）を回収し、シークエンシング解析を行った。

![Figure 15. Identification of genomic DNA fragment of JKCM-AJ-6.1α with a DIG-labeled phaZShe. Lane A, λ-HindIII digest; Lane B, BamHI-digest of gDNA; Lane C, EcoRI-digest of gDNA Lane D, HindIII-digest of gDNA Lane E, SphI-digest of gDNA Lane F, PstI-digest of gDNA.](image)

3-2-2 phaZSheの塩基配列およびアミノ酸配列の決定

phaZShe遺伝子を含むpUC18-6000を配列解析した。遺伝子配列解析より、P(3HB)分解酵素タンパク質（PhaZShe）をコードする遺伝子、phaZShe[オープンリーディングフレーム（ORF）、2049bp]を決定した。推定のORFは683アミノ酸残基からなり、推定されるポリペプチドの分子量は70,382Daであった。また、ORFの最初の26アミノ酸残基中、2位に正に荷電したアミノ酸（リシン残基）が存在し、疎水的な残基が続いていた。この配列の26位と24位にア
ラニン残基という小型の中性側鎖を持つ残基が存在しており、さらに、ORFの最初の26アミノ酸を分泌前駆体のシグナルペプチドであると推定した。

本酵素遺伝子に基づき推定されるアミノ酸配列を、既知のP(3HB)分解酵素およびその他のタンパク質に対してホモロジー検索したところ、本酵素タンパク質は、P(3HB)分解酵素に共通して見られるリパーゼボックス（白色 GLSSG）を含む触媒ドメイン（黒、CD）、推定の基質結合ドメイン（灰色、2ヶ所、SBD IおよびSBD II）、リンカー領域（白色、LD）の3種類のドメインから構成されていることがわかった。本酵素のSBDは2回繰り返し存在していた（Figure 16）。

Figure 16. Nucleotide sequence of the \(\text{phaZ}_\text{She}\) gene and deduced amino acid sequence of the gene product. A putative ribosome-binding (Shine-Dalgarno [S/D]) site and the −35 and −10 regions of a possible promoter sequence are boxed.

本酵素遺伝子の上流域には、ORFX1が位置していた（Figure 17）。ORFX1は、Shewanella sp. ANA-3(YP_871095)のD-3-hydroxybutyrate dehydrogenase (HBDH)の一部である3-ヒドロキシブタン酸デヒドロゲナーゼのアミノ酸配列と有意な相同性を示した。3-ヒドロキシブタン酸デヒドロゲナーゼは、(R)-3-ヒドロキシブタン酸を触媒する酸化還元酵素である[177]。

また、本酵素遺伝子の下流域には、ORFX2およびORFX3が位置していた（Figure 17）。ORFX2は、Shewanella sp. MR-4 (YP_735412)のアグマチンデイミナーゼのアミノ酸配列と相同性を示した。
示した。アグマチンデイミナーゼは、アグマチンを触媒する加水分解酵素である[178]。この酵素は、尿素回路およびシアノアミノ酸代謝に関係している。ORFX3は、Shewanella sp. MR-7 (YP_736720)のアミダーゼのアミノ酸配列の一部と同様性を示した。この酵素は、尿素回路、フェニルアラニン代謝、トリプトファン代謝、シアノアミノ酸代謝などの代謝経路ではたらく[179]。

本酵素タンパク質（PhaZshe）を、相同性の高いP(3HB)分解酵素のCDと比較した。Figure 18に示すように、本酵素は、触媒3残基としてセリン（Ser145）、ヒスチジン（Asp220）、およびアスパラギン酸（His278）残基と、反応中間体において負電荷を帯びた酸素原子を安定化するためのオキシアニオンホール（His63）が保存されていることが推定された。このことから、PhaZsheがカルボキシルエステル加水分解酵素（EC 3.1.1.X）の一種であることが示唆された。PhaZsheのアミノ酸配列全長は、PhaZAfaAE122のそれと高い相同性（50%）を示した[104]。相対的に高い分子量をもち、2つのSBDを有するという特徴は、海洋環境から単離された細菌が生産するP(3HB)分解酵素PhaZtcp[106]、PhaZpy[105]およびPhaZbgr[107]と共通していた。また、リパーゼボックスの位置からPhaZsheは、PhaZAfaAE122、PhaZtcp、PhaZpy、PhaZbgrおよびPhaZdpiと同様にType Aに属すると推定された[99]。Type AおよびType BのP(3HB)分解酵素は、互いに循環置換（circular permutation）であり、PhaZsheは、α/β hydrolase familyの一員と考えられる[94]。fnIIIのLDは、いくつかの細菌の水不溶性ポリマーの加水分解酵素のモジュールとして見出されている。細菌は、はじめ動物源からfnIII遺伝子を取得し、その後この遺伝子は細菌間で水平伝達により広がったと推定されている[180]。PhaZsheの推定のLDは、このfnIIIタイプであり、PhaZAfaAE122、PhaZsheおよびPhaZdpiにおいても見られる。また、PhaZsheのSBD1には、P(3HB)分解酵素のPHBタイプSBD[101, 181]に見られる共通モチーフsNxxHxxAgRAが存在した。一方で、SBD2には、P(3HB)分解酵素のPHVタイプSBD[101, 181]に見られる共通モチーフxxxxHlxagが存在した。
Figure 18. Alignment of amino acid sequences of the putative catalytic domains (CD) of 5 extracellular \(\text{P(3HB)} \) depolymerases from marine environment. The putative catalytic triad and the conserved histidine residues for the predicted oxyanion holes are shown in white on black. Identical residues are marked below with asterisks. Highly similar residues and similar residues are marked below with colon and dot, respectively. Accession numbers of \(\text{P(3HB)} \) depolymerases are as follows: PhaZ\textsubscript{She}, BAU59415; PhaZ\textsubscript{AfaAE122}, AAB40611; PhaZ\textsubscript{BspNRRL}, ZP_01169502; PhaZ\textsubscript{Pst}, BAA32541; PhaZ\textsubscript{Mst}, BAC15574.

\[
\text{PhaZ}\textsubscript{She} \quad 27 \quad \cdots \quad \text{GRRQDGQWWGNNHVVVTVFV} \quad \cdots \quad \text{VDAYKDEGAAPL} \quad \cdots \quad \text{VYQGFPEPANEAF} \quad \text{LGSQVQCSAVYTG} \quad \text{GLASDLYVT} \quad \text{VSQGRGQ} \quad \text{VAS} \\
\text{PhaZ}\textsubscript{AfaAE122} \quad 28 \quad \cdots \quad \text{GNNQNLSSQWQILVFIQTF} \quad \text{PVPGV} \quad \text{SNNVAKLVL} \quad \text{QYCTGIDATEKT} \quad \text{AMVL} \quad \text{VAR} \quad \text{PVG} \quad \text{VVD} \quad \text{GSMQF} \\
\text{PhaZ}\textsubscript{BspNRRL} \quad 29 \quad \cdots \quad \text{RQQTFTTQGQKQQ} \quad \text{KQQ} \quad \text{GQ} \quad \text{QF} \quad \text{GQ} \quad \text{QF} \quad \text{GQ} \quad \text{QF} \quad \text{QF} \\
\text{PhaZ}\textsubscript{Pst} \quad 30 \quad \text{QGQ} \quad \text{Q} \quad \cdots \quad \text{GQ} \quad \text{Q} \quad \text{Q} \quad \text{Q} \quad \text{Q} \quad \text{Q} \\
\text{PhaZ}\textsubscript{Mst} \quad 31 \quad \text{QGQ} \quad \text{Q} \quad \cdots \quad \text{GQ} \quad \text{Q} \quad \text{Q} \quad \text{Q} \quad \text{Q} \quad \text{Q} \quad \text{Q} \\
\]

Figure 19. Alignment of amino acid sequences of the putative domains of extracellular \(\text{P(3HB)} \) depolymerases. (A) Alignment of linker domains (LD). (B) Alignment of substrate-binding domains II (SBD II). (C) Alignment of substrate-binding domains I (SBD I). Identical residues are shown in white on black and marked below with asterisks. Highly similar residues and similar residues are marked below with colon and dot, respectively. Accession numbers of \(\text{P(3HB)} \) depolymerases as follows: PhaZ\textsubscript{She}, BAU59415; PhaZ\textsubscript{AfaAE122}, AAB40611; PhaZ\textsubscript{BspNRRL}, ZP_01169502; PhaZ\textsubscript{Pst}, BAA32541; PhaZ\textsubscript{Mst}, BAC15574.
3-2-3 P(3HB)分解酵素の遺伝子破壊

相同的組換えにより野生株 JKCM-AJ-6,1α のゲノム DNA 上の phaZshe 遺伝子を破壊した。破壊株のスクリーニングは、カナマイシン耐性の有無により判定された。その結果、172 株のカナマイシン耐性株を取得した。さらに、これら破壊株として選択した JKCM-AJ-6,1α-D。プライマー SheCold-f および SheCold-r を用いて JKCM-AJ-6,1α-D 株および野生株の phaZshe 遺伝子を PCR 法により解析した。その結果、JKCM-AJ-6,1α-D 株のゲノム DNA をテンプレートとした際に約 3300bp の PCR 産物を得た。一方、野生株からは、2000bp の PCR 産物を得た。このことから、JKCM-AJ-6,1α-D 株のゲノム DNA 上の phaZshe 遺伝子は、カナマイシン耐性遺伝子挿入により破壊されたことがわかった。また、phaZshe の破壊によりクリアゾーン形成能を失ったため、JKCM-AJ-6,1α 株は、そのゲノム DNA 上に唯一の P(3HB) 分解酵素遺伝子を有することが示された。

![Figure 20. Preparation of the phaZshe gene disruptant.](image)

(A) The phaZshe gene disruptant was prepared by homologous recombination. (B) Electropherogram of DNA fragments amplified with a set of primers: SheCold-f and SheCold-r by PCR method for strain JKCM-AJ-6,1α: wild type and JKCM-AJ-6,1α-D: a disruptant. (Lane 1: DNA molecular mass marker (λ/HindIII marker), lane 2: DNA band with JKCM-AJ-6,1α, lane 3: DNA band with JKCM-AJ-6,1α-D).

3-2-4 野生株および大腸菌 BL21 株由来の PhaZshe の精製および特徴付け

野生株由来の P(3HB) 分解酵素 (wPhaZshe) および大腸菌 BL21 株由来の P(3HB) 分解酵素 (rbPhaZshe) を精製した。酵素の精製表を Table 28 に示す。

<table>
<thead>
<tr>
<th>Stain</th>
<th>Step</th>
<th>Total activity (U)</th>
<th>Total protein (mg)</th>
<th>Specific activity (U/mg)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wPhaZshea</td>
<td>Supernatant</td>
<td>14.40</td>
<td>6.45</td>
<td>2.23</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Butyl Toyopearl</td>
<td>3.38</td>
<td>0.22</td>
<td>15.34</td>
<td>24</td>
</tr>
<tr>
<td>rbPhaZshеб</td>
<td>Supernatant</td>
<td>10.12</td>
<td>4.15</td>
<td>2.44</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Butyl Toyopearl</td>
<td>5.10</td>
<td>0.087</td>
<td>58.35</td>
<td>50</td>
</tr>
</tbody>
</table>

a wPhaZshe (wild type enzyme) was purified from strain JKCM-AJ-6,1α.
b rbPhaZshe (recombinant enzyme) was purified from the E. coli BL21(DE3) carrying pColdIV2049.

Figure 20. Preparation of the phaZshe gene disruptant. (A) The phaZshe gene disruptant was prepared by homologous recombination. (B) Electropherogram of DNA fragments amplified with a set of primers: SheCold-f and SheCold-r by PCR method for strain JKCM-AJ-6,1α: wild type and JKCM-AJ-6,1α-D: a disruptant. (Lane 1: DNA molecular mass marker (λ/HindIII marker), lane 2: DNA band with JKCM-AJ-6,1α, lane 3: DNA band with JKCM-AJ-6,1α-D).

Table 28. Purification of P(3HB) depolymerase from wild-type and recombinant PhaZshe.
最終的に wPhaZ$_{Sh}$の回収率は 24%, 精製度は 6.9 倍であった。また, rbPhaZ$_{Sh}$の回収率は 50%, 精製度は 23.9 倍であった。wPhaZ$_{Sh}$および rbPhaZ$_{Sh}$を, SDS-PAGE 電気泳動したところ 47 kDa および 70 kDa 付近に単一バンドを確認した(Figure 21A). この結果は, サイムグラムの結果とほぼ一致していた。一方, サイムグラム解析から, 大腸菌 DH5α 株由来の酵素(rdPhaZ$_{Sh}$)は, それぞれ wPhaZ$_{Sh}$の 47 kDa および rbPhaZ$_{Sh}$の 70 kDa と一致する分子量に各々二つのクリアゾーンを示した(Figure 21B).

PhaZ$_{Sh}$の遺伝子情報に基づく分子量 67,453 Da は, 既知の海洋性 P(3HB)分解酵素 PhaZ$_{Msp}$の 58,244 Da および PhaZ$_{AfaAE122}$の 62,526 Da より大きいことがわかった。また, 遺伝子情報に基づく分子量と, SDS-PAGE により得られた rbPhaZ$_{Sh}$の分子量約 70 kDa と類似していた。しかし, SDS-PAGE により得られた野生型酵素(wPhaZ$_{Sh}$)の分子量約 47 kDa とは, 大きな差異があった。一方, サイムグラムにおける rdPhaZ$_{Sh}$の二つのクリアゾーンが出現したことを考慮すると, 野生株培養上清において, wPhaZ$_{Sh}$の LD の末端で, 上清に存在するプロテアーゼによりプロセッシングを受けている可能性が示唆された。培養上清での P(3HB)分解酵素の SBD の切断例は, 培養上清中にエンド型プロテアーゼを発現する Paucimonas lemoigneti の PhaZS においても報告されている[91]. また, 破壊株の結果より, 野生株は唯一の P(3HB)分解酵素遺伝子のみをゲノム DNA 上に有していたため, wPhaZ$_{Sh}$および rbPhaZ$_{Sh}$は, 同一の遺伝子(phaZ$_{Sh}$から)由来であると結論付けた。

Figure 21. SDS-PAGE image of PhaZ$_{Sh}$ (A), and P(3HB)-hydrolytic zymogram by PhaZ$_{Sh}$ (B) (Lane 1: Molecular mass marker, lane 2 and 4: wPhaZ$_{Sh}$, lane 3 and 6: rbPhaZ$_{Sh}$, lane 5: rdPhaZ$_{Sh}$). Deduced domain structures of wPhaZ$_{Sh}$ and rbPhaZ$_{Sh}$.
0-0.8MのNaCl濃度における酵素活性への影響を調べた。wPhaZsheおよびrbPhaZsheの至適NaCl濃度は、それぞれ0.5Mおよび0Mであった。wPhaZsheの活性は、NaCl濃度0.4M以下で、酵素活性は低下し、0Mの場合、活性が消失した。対照的に、rbPhaZsheの活性は、NaCl濃度の上昇と共に低下した（Figure 22）。活性汚泥から単離されたRalstonia piketti T1由来P(3HB)分解酵素では、活性発現において、Na⁺要求性がなく、活性は、イオン強度と共に低下することが報告されている[169]。また、海水と同等の高Na⁺濃度環境で、海洋性酵素では、その活性が促進されることが報告されている[182-184]。また、SBDを欠損したwPhaZsheは、NaClが存在しないとP(3HB)を分解できなかった。この結果は、海洋性細菌Marinobacter sp. NK-1株が生産するPhaZmspが、そのSBD欠損により固体P(3HB)分解能力を消失するという結果と一致している[106]。これることは、PhaZsheは、耐塩性酵素であり、wPhaZsheをP(3HB)の表面に結合するために、相対的に高いNaCl濃度で非特異的疎水性結合力が必要であるということが示している（Figure 23）。

![Figure 22. Effect of NaCl concentration on enzymatic activity. The enzymatic activity was measured in the reaction mixture (50mM Tris-HCl (pH7.5), 400 μg of P(3HB) granule, 1mM CaCl₂) at 37°C containing various concentrations of NaCl. (■: wPhaZshe, ◇: rbPhaZshe).](image)

![Figure 23. Deduced domain structures of wPhaZshe and rbPhaZshe (CD: catalytic domain, L: linker domain, S: substrate-binding domain, ◊: The activity was excellent, ○: The activity was normal, ×: The activity can’t be measured).](image)
さらに、wPhaZ_{she}およびrbPhaZ_{she}の温度安定性、pH安定性、至適pHを調べた。Figure 24に示すように、rbPhaZ_{she}とwPhaZ_{she}の温度安定性、pH安定性および至適pHは、ほぼ一致していた。これらの酵素は、15°C以下30分保温後90%以上の残存活性を示したが、それ以上の温度では著しく活性が低下した。一方、pH7-10.5の間は4°Cで5時間保温後、残存活性は、ほぼ80%以上であった。また、至適pHは7.5であった。このようなwPhaZ_{she}およびrbPhaZ_{she}間での結果の類似性は、これらの特性がCD由来であることを示唆している。一方で、陸上から単離されたP(3HB)分解細菌由来のP(3HB)分解酵素の多くは、中温領域で安定である[78, 80, 169]が、本酵素は、他の海洋環境からの酵素[185-187]と同じく熱不安定性を示すことがわかった。

Figure 24. Effect of thermostability (A), pH stability (B) and pH (C) on the enzymatic activity. (A) The wPhaZ_{she} and rbPhaZ_{she} was incubated in 0.01M sodium phosphate buffer (pH7.5) for 30 min at different temperatures, and the residual activity was measured. (B) The enzyme was incubated at 4°C for 5h at different pH value, and the residual activity was measured at pH7.5. (C) The residual activity was measured in various buffers at different pH values. All the measurements of wPhaZ_{she} were supplemented with 0.5M NaCl. (▲: Glycine-HCl, ◇: Na-citrate, ●: Na-phosphate, □: Tris-HCl, ◆: Na-borate, ○: Na-glycine)
各金属イオンおよび阻害剤のwPhaZ_{She}およびrbPhaZ_{She}のP(3HB)分解活性への影響を調べた(Table 29)。wPhaZ_{She}およびrbPhaZ_{She}は、CaCl_{2}、MgCl_{2}またはMnCl_{2}の添加により、賦活化することがわかった。また、低濃度Ca^{2+}が酵素活性を賦活化したことから、本酵素にアロステリック効果をもたらすエフェクターとして作用する可能性が示唆された。また、FeCl_{3}の添加により、活性が抑制されることがわかった。一方、wPhaZ_{She}およびrbPhaZ_{She}は、DFP、PMSF、DTT、Tween 20、SDSまたはEDTAの添加により、完全に失活した。また、10mM DANの添加により、残存活性は、8%および52%までに低下した。これらの結果は、PhaZ_{She}は、その活性発現にセリン残基およびアスパラギン酸残基が関与し、他のP(3HB)分解酵素と同様に、典型的なセリン加水分解酵素であることがわかった[104, 106]。加えて、DTTによる失活は、本酵素分子内における、ジスルフィド結合の存在を示唆している。EDTAによる失活により、PhaZ_{She}の活性発現に金属イオンが関与していることが示唆された。これは、CaCl_{2}、MgCl_{2}またはMnCl_{2}の添加により、PhaZ_{She}の活性を賦活化するという結果と一致していた。さらに、非イオン性界面活性剤であるTween 20および陰イオン性界面活性剤であるSDSの添加により、酵素の分解活性が完全に失われたことから、PhaZ_{She}が、P(3HB)分解時にP(3HB)表面への吸着が必須であることを示唆している。

Table 29. Effects of several ions and reagents on the P(3HB) depolymerase activity.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Final concentration (mM)</th>
<th>wPhaZ_{She}</th>
<th>rbPhaZ_{She}</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CaCl_{2}</td>
<td>0</td>
<td>52</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>121</td>
<td>110</td>
</tr>
<tr>
<td>MgCl_{2}</td>
<td>1</td>
<td>104</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>107</td>
<td>120</td>
</tr>
<tr>
<td>MnCl_{2}</td>
<td>1</td>
<td>111</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>p.</td>
<td>p.</td>
</tr>
<tr>
<td>KCl</td>
<td>1</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>105</td>
<td>96</td>
</tr>
<tr>
<td>FeCl_{3}</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>p.</td>
<td>p.</td>
</tr>
<tr>
<td>DFP</td>
<td>2×10^{-3}</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>5×10^{-3}</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1×10^{-2}</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>DAN</td>
<td>1</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td>PMSF</td>
<td>0.1</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DTT</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EDTA</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tween 20 (% v/v)</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SDS (% v/v)</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Reaction mixture contains 50mM Tris-HCl (pH7.5), 400 μg of P(3HB) granule and 1mM CaCl_{2}.
** Reaction mixture was supplemented with 0.5M NaCl.
p. means precipitation.
wPhaZ_{She} および rbPhaZ_{She} の基質特異性を調べた(Figure 25)。両酵素とも P(3HB), P(3HB-co-3HV)および PESu フィルムを分解した。一方, PBSu, PCL および PLA フィルムを分解しなかった。さらに, 両酵素のフィルムの分解速度は, P(3HB-co-3HV) > P(3HB) > PESu の順で低下した。P(3HB-co-3HV) の分解速度が P(3HB) のそれより大きかった理由として, 3HV モノマーコンポーネントが 3HB 結晶形成に対する欠陥因子として作用し, 結晶化度の低下が起こっているためである可能性がある。また, wPhaZ_{She} および rbPhaZ_{She} の基質特異性は類似しているが, 基質特異性の決定因子が CD であるためではないかと考えられる。

Figure 25. Substrate specificity of PhaZ_{She}. Six polyester films (10×10×0.15 mm) were used as the substrate. The reaction mixture contained a film, 1mM CaCl₂, and 0.1 M potassium phosphate buffer (pH7.4). Enzymatic degradation was performed at 15 °C for 48 h. The enzymatic activity was expressed as the weight loss of the film per unit surface area per hour (mg/cm²/h). (□): rbPhaZ_{She}, and reaction mixture was supplemented with 1 μg/mL of enzyme. (■): wPhaZ_{She}, and the reaction mixture supplemented with 0.5 M NaCl and 1 μg/mL of enzyme. ([): wPhaZ_{She}, and the reaction mixture supplemented with 0.5 M NaCl and 4 μg/mL of enzyme.

3-2-5 速度論的解析

wPhaZ_{She} および rbPhaZ_{She} の速度論的解析を行った(Figure 26)。それぞれの P(3HB)分解の最高速度は, 酵素濃度 4.3 μg/mL および 1.1 μg/mL で観測された。NaCl の非存在下で rbPhaZ_{She} の活性は, 自己阻害を受けた。一方, NaCl の非存在下では wPhaZ_{She} は, 分解活性を示さなかった。また, 0.5 M の NaCl の存在下で rbPhaZ_{She} の活性は, より強い自己阻害を受けた。一方, 0.5 M の NaCl の存在下では wPhaZ_{She} の分解活性が発現し, 一方で自己阻害は観察されなかった。Table 30 に, wPhaZ_{She} および rbPhaZ_{She} の速度定数 kₙ および吸着平衡定数 K を示す。同じ塩濃度下では, 両酵素の K 値から, wPhaZ_{She}-P(3HB)表面の親和性は, rbPhaZ_{She} のそれよりもずっと小さいことがわかった(0.18 ± 0.01 vs. 1.53 ± 0.11 mL/µg)。このことは, SBD の欠損した wPhaZ_{She} は, P(3HB) 表面との親和性が弱いために自己阻害を生じなかった。
と説明できる。一方で、wPhaZsheが大きな速度で基質を分解するためには、相対的に強い疎水性結合により、ポリエステル表面へ吸着する[99, 188]必要がある。rbPhaZsheのK (1.07 ± 0.04 mL/µg)は、海洋性酵素PhaZPst (0.17 ± 0.02 mL/µg)[174]より高いことと、非海洋性細菌由来の酵素PhaZ4pet (1.60 ± 0.11 mL/µg)[189]より低いことがわかった。このことは、海洋性酵素PhaZsheは、他の海洋性P(3HB)分解酵素よりP(3HB)表面への親和力が強いといえる。一方、PhaZSheがSBDを失ってwPhaZsheになった理由に対しては、生理学的な合理性により説明できない。しかしながら、相対的に高いNaCl濃度の海洋環境下での強い非特異的疎水性相互作用によりwPhaZsheは、他のP(3HB)分解酵素と同様にP(3HB)の表面に吸着し、P(3HB)を分解することができる。

Figure 26. Effect of enzyme concentration on the rate of P(3HB) degradation in reaction mixture (50mM Tris-HCl (pH7.5), 400 µg of P(3HB) granule, 1mM CaCl2) at 37˚C during enzymatic degradation. (□): rbPhaZshe and reaction mixture was supplemented with 0.11-2.21 µg of enzyme. (■): rbPhaZshe and reaction mixture was supplemented with 0.5M NaCl and 0.11-2.21 µg of enzyme. (○): wPhaZshe and reaction mixture was supplemented with 0.32-6.5 µg of enzyme. (●): wPhaZshe and reaction mixture was supplemented with 0.5M NaCl and 0.32-6.5 µg of enzyme.

Table 30. The Kinetic parameters of enzyme.

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>K (mL/µg)</th>
<th>kₜ (U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wPhaZshe + 0.5M NaCl</td>
<td>0.18±0.01</td>
<td>0.24±0.01</td>
</tr>
<tr>
<td>rbPhaZshe</td>
<td>1.07±0.04</td>
<td>0.40±0.02</td>
</tr>
<tr>
<td>rbPhaZshe + 0.5M NaCl</td>
<td>1.53±0.11</td>
<td>0.28±0.03</td>
</tr>
</tbody>
</table>
第4章
総括
海洋に流出したプラスチックは、年々海洋環境に蓄積し、深刻な環境問題を引き起こしている。環境中で微生物により分解される生分解性プラスチックは、このような問題に対する一つの解として、注目を集めている。環境中で微生物により分解される生分解性プラスチックは、このような問題に対する一つの解として、注目を集めており、P(3HB)の海洋環境中での実用化を目的とし、その環境分解メカニズムの解明に取り組んだ。具体的には、海洋性 P(3HB)分解細菌の単離と特徴付けを行い、さらにこの細菌が生産する P(3HB)分解酵素の機能と、その構造が P(3HB)の分解に与える影響について詳しく調べた。

第 1 章 【序論】では、プラスチックの環境流出により生じる海洋汚染や海洋生態系への悪影響について概観した。さらに海洋環境における細菌による P(3HB)生合成、環境分解性、P(3HB)分解菌およびその分解酵素に関する先行研究例を述べ、本博士論文における主題を明確にした。また、現在までに明らかになっている海洋性 Shewanella 属細菌の性質をまとめた。最後に、本博士論文の目的を述べた。

第 2 章 【海洋環境からの P(3HB)分解 Shewanella 属細菌の単離と特徴付け】では、静岡県の海水から海洋性 P(3HB)分解細菌 Shewanella sp. JKCM-AJ-6,1α 株を単離・同定し、その株の生化学、生理学的な特徴付けを行った。単離株は、P(3HB)を唯一の炭素源とするマリンミネラル培地でよく増殖した。単離株は、50°C 以上では増殖せず、30-37°C で最もよく増殖した。一方、本株による P(3HB)分解の至適温度は 15°C であった。培地に 0.2M NaCl を添加した際に、本株は最大の比増殖速度（μ=1.0 h⁻¹）を示し、0.8M NaCl の存在下でも増殖した。このことは、本株が、典型的な海洋細菌であることを示している。これは、海洋性 Shewanella 属細菌の P(3HB)分解性に言及した初めての例となる。Shewanella 属細菌は、海洋環境中で様々な有機物の分解過程に関わっていることが報告されていたが、今回の研究により海洋環境における P(3HB)-カーボンサイクルに関する重要な細菌群の 1 つでもあると結論付けた。

第 3 章 【海洋性 Shewanella 属細菌由来の熱不安定性 P(3HB)分解酵素の特徴付け】では、第 2 章で単離された Shewanella sp. JKCM-AJ-6,1α 株由来の酵素(wPhaZShe)、および組み換え体由来の酵素(rbPhaZShe)の構造と機能との関係を調べた。P(3HB)分解酵素(PhaZShe)をコードする遺伝子 phaZShe は、2049bp であった。推定のアミノ酸配列は、683 アミノ酸残基からなり、推定されるポリペプチドの分子量は 70,382Da であった。相同性解析の結果から推定される酵素タンパク質の構造は、シグナルペプチド、触媒ドメイン(CD)、フィブロネクチン III 型リン酸ドメイン(LD)および 2 つの基質結合ドメイン(SBD)から構成されていた。また、野生株由来の P(3HB)分解酵素(wPhaZShe)の分子量(47 kDa)は、アミノ酸配列に基づく分子量より小さかった。wPhaZShe の活性は、熱に対して高い感受性を示し、15°C 以上で徐々に低下した。また 0.5 M NaCl の添加により相対的に高い酵素活性を発現した。このことから、本酵素は、熱不安定性および耐塩性であることがわかった。また、wPhaZShe では、自己阻害
による酵素活性の低下は見られなかった。対照的に、組換え型酵素（rbPhaZshe）は、P(3HB)との間で、wPhaZsheと比較して、より強い親和性を有することがわかった。これらのことを総合的に判断すると、海洋環境では、陸上および淡水環境と比較してより高いNaCl濃度であるため、SBDを持たないwPhaZsheでもP(3HB)表面に対して非特異的な結合が生じており、また自己阻害現象が消失することにより結果的にwPhaZsheがP(3HB)を分解することにおいてSBD欠損が有利に働いていると考えられる。

以上の結果をまとめて、今後の研究課題を考えると、海洋環境におけるP(3HB)およびその共重合体を利用するためには、それらの物性を改善するとともに、海洋環境中における分解速度の制御技術が重要となる。本博士論文では、海洋環境におけるP(3HB)およびその共重合体の分解速度制御を目的として、海洋性P(3HB)分解菌を特徴付けし、さらにそのP(3HB)分解酵素の構造と機能との関係を詳しく調べた。本酵素は、今までに報告されている海洋性P(3HB)分解酵素PhaZAfaAE122、PhaZMspおよびPhaZPstと違い、塩濃度による酵素の賦活化および熱に対する高い感受性（熱不安定性）を示すことが明らかになった。既知の海洋性P(3HB)分解酵素を、塩および温度に対する応答性によりまとめた（Figure 27）。海洋性P(3HB)分解酵素には、塩に対して非感受型、好塩型（塩により賦活化される）および耐塩型（塩により活性が低下する）が存在している。また、温度に対する応答性では、熱安定型および熱不安定型が存在した。結果としてこれらは、図に示す計6種類のタイプの酵素に分類できた。さらに、PhaZsheがSBDを欠損することにより（wPhaZshe）好塩性が発現したが、このような報告例は、本博士論文が初めてである。塩濃度が高くなるとPhaZsheのSBDは切断され（wPhaZshe）、塩濃度が低い時はインタクトな状態（rbPhaZshe）で存在しているとすれば合理的な解釈が可能であるが、このことを実証のためにはさらなる研究が必要である。

以上の結果を総合的に判断すると、海洋環境におけるP(3HB)およびその共重合体を利用するためには、それぞれの物性を改善するとともに、海洋環境中における分解速度の制御技術が重要となる。本博士論文では、海洋環境におけるP(3HB)およびその共重合体の分解速度制御を目的として、海洋性P(3HB)分解菌を特徴付けし、さらにそのP(3HB)分解酵素の構造と機能との関係を詳しく調べた。本酵素は、今までに報告されている海洋性P(3HB)分解酵素PhaZAfaAE122、PhaZMspおよびPhaZPstと違い、塩濃度による酵素の賦活化および熱に対する高い感受性（熱不安定性）を示すことが明らかになった。既知の海洋性P(3HB)分解酵素を、塩および温度に対する応答性によりまとめた（Figure 27）。海洋性P(3HB)分解酵素には、塩に対して非感受型、好塩型（塩により賦活化される）および耐塩型（塩により活性が低下する）が存在している。また、温度に対する応答性では、熱安定型および熱不安定型が存在した。結果としてこれらは、図に示す計6種類のタイプの酵素に分類できた。さらに、PhaZsheがSBDを欠損することにより（wPhaZshe）好塩性が発現したが、このような報告例は、本博士論文が初めてである。塩濃度が高くなるとPhaZsheのSBDは切断され（wPhaZshe）、塩濃度が低い時はインタクトな状態（rbPhaZshe）で存在しているとすれば合理的な解釈が可能であるが、このことを実証のためにはさらなる研究が必要である。
本博士論文では、海洋中でプロセッシングされた野生型酵素(wPhaZ_{She})が、Na^{+}イオン存在下において、初めてP(3HB)を加水分解できるようになることを示した。海洋中のNa^{+}イオンは、溶媒である水の誘電率を下げ、結果的に酵素-P(3HB)間での静電的相互作用を小さくして、疎水的相互作用等により結合力を増していることが予想される。一般に、陸生酵素では、高い塩濃度が、酵素酵素間の凝集や、酵素自体の高次構造変化を誘発し、活性の低下をもたらすことが知られている。一方で、本酵素のような海洋性酵素は、そのような影響を受けにくい。これらのことを、総合的に判断すると、海洋環境でP(3HB)を基盤とする生分解性プラスチックの生分解速度制御をするためには、材料表面の疎水性が一つの鍵になる可能性がある。つまり、Figure 28に示すように、表面を親水加工すれば、酵素分解速度は低下し、疎水加工すれば上昇すると予想される。また、これらの組み合わせによる複合材料化は、海洋環境中での生分解性プラスチックの自在分解に対する解を提案するかもしれない。

Figure 28. A strategy in material design to control the biodegradation rate in marine environments.
参考文献

[35] Conservancy O. Trash travels. From our hands to the sea, around the globe, and through time. International Coastal Cleanup. 2010.

59

鈴木健一郎, 平石明, 横田明. 微生物の分類・同定実験法. シュプリンガー・フェアラーク, 東京; 2001.

業績目録

関連論文

第2章 【海洋環境からの P(3HB)分解 Shewanella 属細菌の単離と特徴付け】

第3章 【海洋性 Shewanella 属細菌由来の熱不安定性 P(3HB)分解酵素の特徴付け】

参考論文

謝辞

本研究を遂行し本博士論文をまとめるにあたり、5年前の来日以来、博士前期・後期課程を通じて、終始ご指導ご鞭撻を頂きました、群馬大学大学院理工学府理工学専攻物質・生命理工学領域、粕谷健一教授に心より感謝申し上げます。また、本博士論文の審査の労をねぎらうとともに、ご指導頂きました、群馬大学大学院理工学府理工学専攻物質・生命理工学領域、土橋敏明教授、同、山延健教授、群馬大学大学院理工学府理工学専攻環境創生理工学領域、渡邉智秀教授、群馬大学大学院理工学府理工学専攻物質・生命理工学領域、行木信一准教授に心より感謝申し上げます。

本博士論文の執筆にあたっては、実験の指導や、建設的なコメントを頂きました、群馬大学大学院理工学府理工学専攻物質生命理工学領域、橘熊野助教および群馬大学への留学のお手伝いや、日本で生活するための貴重なご助言を頂いた、台湾の義守大学医学院生物科技学系、謝文権准教授に心より感謝致します。また、最後まで一緒に頑張ってくれた環境調和型材料科学研究室の同期の皆様、研究を手伝ってくれた後輩達に深く感謝しております。

最後に、研究者の道を志している筆者に理解を示し、日本での留学生活を支えてくれた両親や、温かい励ましをいつも送り続けてくれた台湾の家族全員に心より感謝します。