Background A mismatch between thallium-201 (Tl) and iodine-123 (I) dual single-photon emission computed tomography (SPECT) reflects a dysfunctional but viable myocardium, such as stunned or hibernating myocardium, in patients with coronary artery disease (CAD). However, the cardiac function does not always improve after revascularization. The present study aimed to determine whether serial Tl and I dual SPECT can predict improvements in cardiac function after coronary artery bypass graft surgery (CABG) in patients with CAD.

Materials and methods The study included 98 patients with CAD requiring CABG and having a left ventricular ejection fraction (LVEF) less than 50%. The total defect score (TDS) was calculated from Tl and I dual SPECT images acquired before and 3 weeks after CABG. The LVEF, left ventricular end-diastolic volume index, and end-systolic volume index were determined by means of contrast left ventriculography before and 6 months after CABG.

Results After 6 months, LVEF improved by 5% or more in 62 patients (group A) but did not improve in the remaining 36 patients (group B). Baseline Tl-TDS was significantly lower (9.1 ± 4.6 vs. 14.6 ± 6.5, P < 0.001), and the mismatch score (B-MIPP-TDS – Tl-TDS) was significantly higher (6.9 ± 4.2 vs. 4.2 ± 3.9, P = 0.002) in group A than in group B. The extent of change in B-MIPP-TDS 3 weeks after CABG compared with that before (delta-BMIPP-TDS) was significantly greater in group A than in group B (–5.9 ± 3.0 vs. 2.8 ± 4.3, P < 0.001). Stepwise multivariate analysis selected delta-BMIPP-TDS as a significant independent predictor of improvement in LVEF at 6 months after CABG (multivariate β-coefficient = −0.718, P < 0.001). The degree of change in LVEF 6 months after CABG compared with that before significantly and negatively correlated with delta-BMIPP-TDS ($r = 0.631, P < 0.001$).

Conclusion The delta-BMIPP-TDS evaluated by serial Tl and I dual SPECT can predict improvements in cardiac function during the chronic phase of CAD. Nucl Med Commun 36:148–155 © 2015 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Introduction Revascularization for patients with coronary artery disease (CAD) aims to improve the left ventricular (LV) function [1], enhance the quality of life [2], grant freedom from anginal symptoms, and increase survival [3]. Among these factors, clinical outcomes should relate to functional improvement after coronary artery bypass graft surgery (CABG) in patients with CAD who have a viable myocardium [4]. Therefore, various imaging methods that can identify viable myocardium have been used in patients with ischemic LV dysfunction. However, cardiac function does not always improve after CABG: One reason for this is target vessels that are calcified or small in diameter, rendering them unsuitable for revascularization, as well as the length or location of lesions.

Fatty acids constitute the major fuel source for the normal myocardium under normal acrobic conditions, and iodine-123-(R)-iodo-3-(R)-methylpentadecanoic acid (I-BMIPP) is clinically used as a probe to study the myocardial metabolism of fatty acids [5,6]. Regions with mismatches between I-BMIPP uptake and perfusion imaging reportedly reflect dysfunctional but viable myocardium, such as that seen with myocardial stunning or hibernation, in which LV function will improve after revascularization [7–9]. However, changes in thallium-201 (Tl) and I dual single-photon emission computed tomography (SPECT) findings before and after CABG have not been addressed to evaluate myocardial contractile reserve in patients with CAD.
The present study investigated whether serial \(^{201}\)TI and \(^{123}\)I-BMIPP dual SPECT can predict improved cardiac function after CABG in patients with CAD.

Materials and methods

Patient population

Consecutive 181 patients with CAD and LV dysfunction who underwent isolated CABG at our institution between February 2004 and August 2006 were prospectively enrolled. All CABG surgeries were performed using standard cardiac catheterization, including coronary angiography and contrast left ventriculography (LVG). Inclusion criteria included a contrast left ventriculographic LV ejection fraction (EF) less than 50% before CABG. Exclusion criteria included having undergone a previous bypass graft or angioplasty \((n = 22)\), having a ventricular pacemaker implanted \((n = 8)\), incidence of myocardial infarction within the past 8 weeks \((n = 15)\), and presence of severe valvular heart disease \((n = 10)\). After excluding these patients we analyzed data acquired from the remaining 126. Our institutional ethics review board approved the study and all patients provided written informed consent to participate.

Study protocol

Patients were assessed with \(^{201}\)TI and \(^{123}\)I-BMIPP dual SPECT before and 3 weeks after CABG. All patients were reassessed using coronary angiography and contrast LVG after 6 months of follow-up. Patients with poor angiographic runoff, significant stenosis, occlusion of the bypass graft, or de-novo native coronary artery lesions at this time were excluded from the study.

\(^{201}\)TI and \(^{123}\)I-BMIPP dual SPECT

Dual SPECT using \(^{201}\)TI and \(^{123}\)I-BMIPP was performed using a single-head gamma camera (Millennium MPR; GE Medical Systems, Waukesha, Wisconsin, USA) equipped with a low-energy, general-purpose, parallel-hole collimator. Resting patients were injected intravenously with \(^{123}\)I-BMIPP \((111 \text{ MBq})\) and immediately thereafter with \(^{201}\)TI \((74 \text{ MBq})\). Images were started 20 min later and the camera was rotated over 180° from the 45° right anterior oblique position to the 45° left posterior oblique position in 32 views with an acquisition time of 40 s per view. Images were acquired in a 64 × 64 matrix using a filtered back-projection method for reconstruction. We acquired \(^{201}\)TI data using a symmetrical 70 keV window at 10% width \((66.5–73.5 \text{ keV})\), and \(^{123}\)I data using a symmetrical 159 keV window at 10% width \((151.1–167 \text{ keV})\).

Acquired \(^{201}\)TI and \(^{123}\)I-BMIPP SPECT images were divided into 17 segments on the basis of American Heart Association recommendations [10]. Regional tracer uptake was semiquantified using a scoring system in which, 0, 1, 2, 3, and 4 represented normal, mildly, moderately, significantly reduced uptake, and no uptake, respectively, as in previously described methods [11–13]. The total defect score (TDS) for each image was calculated as the sum of all defect scores. The mismatch score was calculated using the following formula: BMIPP-TDS − TI-TDS.

Evaluation of left ventricular function

Contrast LVG was performed \(\text{(in the 30° right anterior oblique orthogonal projection)}\) after coronary angiography before and 6 months after bypass surgery. The LVEF, LV end-diastolic volume index (EDVI), and LV end-systolic volume index (ESVI) were calculated by the area-length method as previously reported [14].

Serial changes were observed between the first and second scintigraphic parameters and left ventriculographic parameters before and after bypass surgery.

Changes between the first and second \(^{201}\)TI and \(^{123}\)I-BMIPP dual-scintigraphic parameters (TI-TDS and BMIPP-TDS) and left ventriculographic parameters \((\text{EDVI, ESVI, and LVEF)}\) were calculated using the following formula: Delta \(-\langle X \rangle = [\langle X \rangle \text{ value of second evaluation}] – [\text{first value of } (X)]\), where \(X = \) \(^{201}\)TI and \(^{123}\)I-BMIPP dual scintigraphic, or left ventriculographic parameters.

Statistical analysis

Data were statistically analyzed using SPSS 16.0 (SPSS Inc., Chicago, Illinois, USA), or SAS version 9.1 (SAS Institute Inc., Cary, North Carolina, USA). Numerical results are expressed as means \(\pm\) SD. Categorical data were compared between two groups using two-sided \(\chi^2\) tests, and differences between continuous variables were evaluated using an unpaired \(t\)-test. Changes from baseline were evaluated within each treatment group of patients who were assessed twice using a paired \(t\)-test and between two groups using two-way analysis of variance.

Relationships between continuous variables were assessed using linear regression analysis. Variables of interest were examined by univariate and stepwise multivariate analyses to determine the contribution of the degree of change in LVEF \((\text{delta-LVEF)}\). Cutoff values for selecting scintigraphic parameters for predicting LVEF improvements after CABG were identified by receiver-operating characteristic analysis. In all analyses, \(P\) values less than 0.05 were deemed statistically significant.

Results

Clinical characteristics

Two patients experienced a cerebral accident, two patients died of congestive heart failure after CABG, and one died of lethal arrhythmia. Eighteen patients were excluded on the basis of follow-up coronary angiographic results at 6 months after CABG because of poor runoff of an arterial graft \((n = 3)\), significant stenosis of an arterial...
graft (n = 4), occluded venous grafts (n = 4), and de-novo native coronary artery lesions (n = 7). Five others were excluded because of incomplete follow-up data. Thus, 98 of the 126 enrolled patients (men, n = 70; women, n = 28; mean age, 69.6 ± 6.4 years; range, 50–81 years) completed the entire protocol.

After the 6-month follow-up, we grouped these 98 patients on the basis of at least 5% increase in left ventriculographic LVEF (n = 62; group A) or less than 5% improvement in LVEF (n = 36; group B). The clinical characteristics and pharmacotherapy did not significantly differ between the two groups (Table 1) except that group B used significantly more diuretics compared with group A.

Comparison of contrast left ventriculographic findings before and 6 months after CABG

Table 2 summarizes changes in EDVI, ESVI, and LVEF at 6 months after CABG. Baseline EDVI and ESVI tended to be lower and LVEF tended to be higher in group A than in group B, but the differences did not reach statistical significance.

The EDVI and ESVI at 6 months after CABG significantly decreased and increased in groups A and B, respectively, compared with baseline values. Moreover, delta-EDVI and delta-ESVI at 6 months after CABG were significantly higher in group B than in group A. The LVEF was significantly increased and decreased relative to baseline values in groups A and B, respectively, and the delta-LVEF was significantly higher in group A than in group B.

Comparison of 201TI and 123I-BMIPP dual SPECT before and 3 weeks after CABG

Table 1 and Fig. 1 summarize the 201TI and 123I-BMIPP dual-SPECT imaging parameters. Baseline parameters were significantly lower in the TI-TDS in group A compared with group B, whereas BMIPP-TDS did not significantly differ between the two groups. Moreover, the mismatch score was significantly higher in group A than in group B (Table 1).

The TI-TDS and BMIPP-TDS at 3 weeks after CABG were significantly decreased relative to the baseline values in group A, but did not significantly change in group B. Moreover, delta-TI-TDS and delta-BMIPP-TDS were significantly lower in group A than in group B (Fig. 1).

Relationship between degrees of changes in LVEF and in total defect scores

The delta-LVEF significantly and negatively correlated between delta-TI-TDS (r = −0.462, P < 0.001) and delta-BMIPP-TDS (r = −0.631, P < 0.001) between baseline and 6 months (Fig. 2), with delta-BMIPP-TDS having a stronger correlation.

Evaluation of factors predicting improved cardiac function

Table 3 shows the results of univariate and multivariate analyses of factors predicting improvements in LVEF after CABG in patients with CAD. The univariate analysis selected diuretic use, baseline EDVI, baseline ESVI, baseline LVEF, baseline TI-TDS, mismatch score, delta-TI-TDS, and delta-BMIPP-TDS as predictive factors. Stepwise multivariate analysis identified baseline TI-TDS and delta-BMIPP-TDS as significant independent predictors of an improvement in LVEF at 6 months after CABG. However, the multivariate β-coefficient value for delta-BMIPP-TDS was more favorable than that for baseline TI-TDS.

Comparison of delta-BMIPP-TDS in both groups

Figure 3 shows the delta-BMIPP-TDS in both groups evaluated by the first and second BMIPP-TDS. The sensitivity, specificity, and accuracy of a delta-BMIPP-TDS cutoff of up to −3 (identified by receiver-operating characteristic analysis) to predict LVEF improvement at 6 months after CABG were 93.5% (58/62), 91.2% (33/36), and 92.9% (91/98), respectively.

Case presentation

Figure 4 shows a representative 201TI and 123I-BMIPP dual SPECT before and 3 weeks after CABG in patients with CAD. This figure also shows LVG before and 6 months after CABG. Both TI-TDS and BMIPP-TDS were decreased from baseline to 3 weeks after CABG. Moreover, in this patient, LVEF was increased at a chronic phase of 6 months after CABG.

Discussion

The major finding of this study is that delta-BMIPP-TDS evaluated by serial 201TI and 123I-BMIPP dual SPECT can predict improvement in cardiac function at 6 months after CABG in patients with CAD.
Several studies have shown that \(^{201}\)Tl imaging is useful for identifying viable myocardium in patients with CAD who had chronic ischemic LV dysfunction [15,16]. Ragosta et al. [16] discovered a relationship between changes in LVEF and \(^{201}\)Tl uptake before and after CABG in patients with CAD. The amount of \(^{201}\)Tl uptake after CABG increased in patients with improved LVEF compared with baseline values; however, it was

![Image](https://via.placeholder.com/150)

Table 2 Changes in contrast left ventriculographic parameters in both groups

<table>
<thead>
<tr>
<th></th>
<th>Group A (mean±SD)</th>
<th>Group B (mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>6 months</td>
</tr>
<tr>
<td>Contrast left ventriculography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDVI (ml/m(^2))</td>
<td>76.8 ± 29.0</td>
<td>66.5 ± 22.6*</td>
</tr>
<tr>
<td>ESVI (ml/m(^2))</td>
<td>46.8 ± 22.4</td>
<td>33.4 ± 18.0*</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>40.5 ± 6.4</td>
<td>52.0 ± 9.1*</td>
</tr>
</tbody>
</table>

EDVI, end-diastolic volume index; ESVI, end-systolic volume index; LVEF, left ventricular ejection fraction.

*\(P < 0.001\).
†\(P < 0.05\) versus baseline.
‡\(P < 0.001\) versus group A.

Fig. 1

Comparison of \(^{201}\)Tl and \(^{123}\)I-BMIPP dual-scintigraphic findings for Ti-TDS (a) and BMIPP-TDS (b) in the two groups. \(^{123}\)I-BMIPP, iodine-123-beta-methyl iodophenyl pentadecanoic acid; NS, nonsignificant; TDS, total defect score; \(^{201}\)Tl, thallium-201; 3W, 3 weeks after therapy.
unchanged in patients whose LVEF did not improve [16]. We similarly found significantly increased 201Tl uptake after CABG in patients with improved LVEF but not in those without. We also assessed the relationship between the degree of change in Tl-TDS and the change in LVEF, but the correlation in our CAD patients was statistically weak compared with those in the study by Ragosta et al. [16]. Such discrepancies may be partly due to differences between the patient populations, particularly the amount of infarcted myocardium. Many of our patients had experienced a prior myocardial infarction and thus bypass grafting might not have significantly improved 201Tl uptake because the infarcted areas had already undergone irreversible necrosis.

Long-chain fatty acids are important substrates for myocardial oxidative metabolism, as 60–80% of the ATP produced in the heart is derived from their oxidation.

Table 3 Univariate and multivariate linear model of delta-LVEF

<table>
<thead>
<tr>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient</td>
<td>P-value</td>
</tr>
<tr>
<td>Age</td>
<td>-0.041</td>
</tr>
<tr>
<td>Sex (male = 1)</td>
<td>0.007</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>-0.160</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.049</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>-0.112</td>
</tr>
<tr>
<td>Prior MI</td>
<td>-0.176</td>
</tr>
<tr>
<td>More than 3 grafts</td>
<td>-0.059</td>
</tr>
<tr>
<td>ACE-I or ARB</td>
<td>0.109</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>0.151</td>
</tr>
<tr>
<td>Ca antagonist</td>
<td>0.079</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.050</td>
</tr>
<tr>
<td>Diuretics</td>
<td>-0.226</td>
</tr>
<tr>
<td>Baseline EDVI</td>
<td>-0.292</td>
</tr>
<tr>
<td>Baseline ESVI</td>
<td>-0.319</td>
</tr>
<tr>
<td>Baseline LVEF</td>
<td>0.282</td>
</tr>
<tr>
<td>Baseline Tl-TDS</td>
<td>-0.447</td>
</tr>
<tr>
<td>Baseline BMIPP-TDS</td>
<td>-0.189</td>
</tr>
<tr>
<td>Mismatch score</td>
<td>0.270</td>
</tr>
<tr>
<td>Delta-Tl-TDS</td>
<td>-0.462</td>
</tr>
<tr>
<td>Delta-BMIPP-TDS</td>
<td>-0.631</td>
</tr>
</tbody>
</table>

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; BMIPP, beta-methyl iodophenyl pentadecanoic acid; MI, myocardial infarction; TDS, total defect score; Tl, thallium.

Fig. 2

Correlation between the degree of changes in BMIPP-TDS at 3 weeks after bypass grafting compared with that before, and degree of changes in LVEF from baseline to after 6 months in patients with coronary artery disease. Solid circles represent group A and open circles represent group B. BMIPP, beta-methyl iodophenyl pentadecanoic acid; LVEF, left ventricular ejection fraction; TDS, total defect score; Tl, thallium.

Fig. 3

Comparison of delta-BMIPP-TDS in the two groups. Solid circles represent group A and open circles represent group B. BMIPP, beta-methyl iodophenyl pentadecanoic acid; TDS, total defect score.
However, this process is suppressed in patients with myocardial ischemia, when lack of oxygen availability and/or mitochondrial dysfunction renders the myocardium more dependent upon glycolysis [17,18]. A methyl group branching from the fatty acid chain protects BMIPP from metabolism through beta-oxidation while retaining specific physiologic properties such as uptake and incorporation into the triglyceride pool [19]. Myocardial ischemia is detected by 123I-BMIPP as diminished oxidative fatty acid metabolism, even though abundant perfusion has been restored to the jeopardized ischemic myocardium [20,21]. This phenomenon reflects the gradual recovery of oxidative fatty acid metabolism upon the restoration of blood flow after revascularization.
Therefore, several investigators suggest that impaired myocardial 123I-BMIPP uptake induced by ischemia can be reversed after revascularization in patients with CAD [22,23]. However, serial 123I-BMIPP imaging has not yet been applied to the prediction of functional recovery after CABG in such patients. Here, we investigated whether serial 201Tl and 123I-BMIPP dual SPECT can predict improved cardiac function after CABG. We discovered that the degree of change in BMIPP-TDS (delta-BMIPP-TDS) was an independent predictor of an improvement in LVEF at 6 months after CABG and that delta-BMIPP-TDS significantly and negatively correlated with the degree of change in LVEF at 6 months after CABG when compared with that before.

In contrast, regions of mismatch between 123I-BMIPP and 201Tl (perfusion) images reflect dysfunctional but viable myocardium [7–9]. Therefore, systolic function should improve after revascularization in patients with CAD and scintigraphic mismatches [22,23]. Univariate analysis in the present study identified baseline mismatch scores as independent predictors of improvement in cardiac function at 6 months after CABG, but multivariate analysis did not. One explanation for this might be targets for coronary artery grafts being unsuitable because of calcifications, or having a small vessel diameter, as well as lesion length and location. Therefore, we evaluated serial 201Tl and 123I-BMIPP dual SPECT before and after CABG in our patients, because scintigraphic parameters should not be improved unless bypass grafting proceeded on suitable coronary arteries. We concluded that the delta-BMIPP-TDS was the most useful parameter for predicting functional recovery compared with baseline mismatch scores or perfusion defects after CABG in patients with CAD.

As the approach of comparison for cardiac perfusion and metabolism, PET is well known [24,25]. In this study, we used 201Tl SPECT imaging as the perfusion tracer. However, it has been reported that 201Tl follows potassium, and thus this tracer is affected by the cellular energetic status (because of its dependence on the active Na/K transport by Na/K-ATPase) [26,27]. Therefore, the mismatch score in this study might be lower than that calculated using PET. Moreover, because the complete recovery of 201Tl uptake at 3 weeks after CABG might not be observed, delta-Tl-TDS might be lower than the actual status. Although the mismatch of perfusion and metabolism using PET is a widely accepted technique, PET is not available in many centers in Japan. Therefore, we used 123I-BMIPP imaging and calculated delta-BMIPP-TDS, because this parameter could be expected to be more sensitive than delta-Tl-TDS. The several advantages of SPECT imaging have been raised for comparison with PET imaging: (a) it is a noninvasive measure of mitochondrial viability and recovery; (b) dual SPECT (201Tl and 123I-BMIPP) can be obtained in a single scan; and (c) the half-life tracers have a longer life.

To sum up, the extent of changes in BMIPP-TDS determined by serial 201Tl and 123I-BMIPP dual SPECT before and 3 weeks after CABG in patients with CAD was found to be significantly greater in patients with an improved LVEF than in those without. The multivariate analysis showed that the delta-BMIPP-TDS was an independent predictor of improvement in LVEF after 6 months. Moreover, we found significant negative correlations between the delta-BMIPP-TDS and the degree of change in LVEF before and 6 months after CABG. Therefore, CAD patients with low delta-BMIPP-TDS as evaluated by serial 201Tl and 123I-BMIPP dual SPECT must be followed up especially carefully during medical management.

Study limitations
One limitation of the present study was the relatively small number of enrolled patients with CAD. Pharmacotherapy for CAD has considerably advanced in recent years, as clinical trials have shown favorable long-term effects of ACE inhibitors [28] and β-blockers [29] on cardiac function. However, this study did not select these therapeutic approaches as independent predictors of improved cardiac function after CABG. Accordingly, long-term effects should be evaluated in a larger cohort of patients with CAD.

In this study protocol, follow-up 201Tl and 123I-BMIPP dual SPECT was performed 3 weeks after CABG. Some amount of stunned myocardium after 3 weeks might be present, and may influence the 201Tl imaging. In our institution, the first outpatient visit after CABG was usually scheduled at this time. For these reasons, we selected 3 weeks after CABG as the time for follow-up SPECT. Moreover, technetium-labeled imaging is known to be a more favorable radiation dosimetric technique and has more favorable imaging properties compared with 201Tl imaging [30]. Furthermore, it has been reported that delayed technetium-labeled imaging reflects mitochondrial viability and detects stunned myocardium in CAD patients [31]. However, technetium-labeled imaging and 123I-BMIPP are not suitable for dual SPECT because of their energy peaks. In the future, we need to evaluate follow-up SPECT data during the later period using technetium-labeled imaging.

Conclusion
In patients with CAD, delta-BMIPP-TDS evaluated with serial 201Tl and 123I-BMIPP dual SPECT before and at 3 weeks after CABG can predict improvements in cardiac function during the chronic phase.

Acknowledgements
Conflicts of interest
There are no conflicts of interest.
References

