On Maximal Ideal Cycles for 2-Dimensional Normal Double Points

Tadashi TOMARU*

(Received October 7, 1997; Accepted November 10, 1997)

SUMMARY: In this paper we study the maximal ideal cycle on the minimal good resolution of a normal double point (X, o) defined by $z^2 = f(x, y)$ over the complex number field. We compare it to the fundamental cycle on the minimal resolution of (X, o). By using an argument of covering surface, we show that the ratio of coefficients of such both cycles on any exceptional component is always 1 or 2.

1. INTRODUCTION AND PRELIMINARIES.

Let $\pi: (\hat{X}, A) \rightarrow (X, o)$ be a resolution of a normal complex surface singularity, where $\pi^{-1}(o) = A = \bigsqcup A_i$ is the irreducible decomposition of the exceptional set A. The fundamental cycle Z_A on A is a unique smallest positive cycle $\sum z_i A_i$ ($z_i \in \mathbb{Z}$) which satisfy $Z_A \cdot A_i \leq 0$ for any i (11). Further we denote by m the maximal ideal cycle of $\mathcal{O}_{X,o}$. The maximal ideal cycle M_A on A is a unique positive cycle $\sum m_i A_i$ ([2], [3]), where $m_i = \min_i v_{A_i}(\pi^* f) \in \mathbb{N}$ and v_{A_i} is the valuation determined by A_i (i.e., the vanishing order on A_i). Then we have $Z_A \leq M_A$.

(1.1) $0 < -Z_A^2 \leq -M_A^2 \leq \text{mult}(\mathcal{O}_{X,o})$ and $m \mathcal{O}_{X,o} \subseteq \mathcal{O}(-M_A)$, where $\text{mult}(\mathcal{O}_{X,o})$ is the multiplicity of $\mathcal{O}_{X,o}$ ([2]).

Every normal double point (i.e., multiplicity $= 2$) is defined by $z^2 = f(x, y)$ (cf. [1],[4]), where $f \in \mathbb{C}[x, y]$. For normal double points, D.J. Dixon [5] compared the fundamental cycle Z and the maximal ideal cycle M. He proved that if $\text{ord}(f)$ is even, M equals Z for any resolution. Further he proved that if f is irreducible and $\text{ord}(f)$ is odd, M equals Z on the minimal resolution. In this paper we also compare M and Z, when $\text{ord}(f)$ is odd but f is not necessarily irreducible.

In section 2 we prove our main results. Let (\hat{X}, A) be the minimal resolution or the minimal good resolution of a normal double point (X,o). Let M_A and Z_A be the maximal ideal cycle and the fundamental cycle respectively. We prove that there is a decomposition $A = A(1) \cup A(2)$ such that $A(i)$ is a connected 1-dimensional subvariety for $i=1,2$ and $M|_{A(1)} = 2Z|_{A(1)}$ and $M|_{A(2)} = Z|_{A(1)}$, where $M|_{A(1)}$ is the restriction of M onto $A(1)$ and so on. This result can be also proved by an entirely different method due to Karras (see [6]). However, our proof of this paper is important from the technical point of view.

In general, the maximal ideal cycle for a resolution is not determined from the w.d. graph (= weighted dual graph) of the exceptional set. For example, w.d. graphs for $z^2 = x^6 + y^8$ and $z^2 = y(x^4 + y^4)$ are identical. It is given by the following configuration:

$$
\begin{array}{ccc}
A_1 & A_2 & A_3 \\
\circ & \circ & \circ \\
\end{array}
$$

However the maximal ideal cycles for them are different and they are given by $A_1 + A_2 + A_3$ and $2A_1 + 2A_2 + A_3$ respectively (see p.48 in [7]).

From now on we prepare some facts and terminologies for normal double points according to [4]. Let (X, o) be a normal double point defined by $z^2 = f(x, y)$, where $f \in \mathbb{C}[x, y]$ with $\text{ord}(f) \geq 2$. Then f does not contain any multiple factor. Let $C = \{(x, y) = 0 \subseteq \mathbb{C}^2 \}$ be a curve singularity. We obtain an embedded resolution $C^2 \xrightarrow{\sigma_1} V_1 \xrightarrow{\sigma_2} ... \xrightarrow{\sigma_k} V = V_e$ of (C, o) by an iteration of blowing-ups (i.e., the strict
transform of C is a simple normal crossing divisor in V_1. By taking a fiber product we have the following diagram:

$$
\begin{align*}
\begin{array}{c}
\xymatrix{
C^2 \ar[r]^{-\sigma_{1}, \cdots, \sigma_{t}} & V \times C^1 \\
\ar@{^(->}[u] \ar[u]_p \ar[r] & \ar@{^(->}[u] \ar[u]_{\pi} \ar[r] & \ar@{^(->}[u] \ar[u]_\pi \\
V_0 = C^2 \ar[r]^{\sigma_{1}, \cdots, \sigma_{t}} & V_1 \ar[r] & \cdots \ar[r] & V = V_{t+1}
\end{array}
\end{align*}
\tag{1.1}
$$

where $\sigma = \sigma_{1}, \cdots, \sigma_{t}$ and p is a double covering induced by the projection $C^2 \rightarrow C^1$ $(x, y, z) \mapsto (x, y)$, and then π is a double covering map, too. The map σ is a birational morphism. Let \tilde{E} be the strict transform of the (1)-exceptional curve of σ, onto V by σ, \cdots, σ_{i+1} $(i = 1, 2, \cdots, s)$ and ϕ is the normalization of V. Let $C = \bigsqcup C_j$ be the irreducible decomposition and let \tilde{C}_j be the strict transform by $\sigma(j = 1, 2, \cdots, r)$. Let $E = \pi^{-1}(\tilde{E})$ and $E_i = \pi^{-1}(\tilde{C}_i)$, so E_i is not always irreducible. Further we put $C = \bigsqcup C_j$.

Definition 1.1. We call \tilde{E}_i an (f)-odd (resp. (f)-even) curve if the vanishing order $\nu_{\tilde{E}_i}(f \circ \sigma)$ is odd (resp. even). Further, since $\nu_{\tilde{C}_j}(f \circ \sigma) = 1$ for any \tilde{C}_j, we call \tilde{C}_j an (f)-odd curve.

Please refer [5] about the relations between self-intersections of E_i and \tilde{E}_i, and also coeff$_{\tilde{E}_i}$ M and coeff$_{\tilde{E}_i}Z$.

Notations and terminologies. Let $\pi : (\tilde{X}, A) \rightarrow (X, o)$ be a resolution of a normal surface singularity, where $\pi^{-1}(o) = A = \bigsqcup A_i$ is the irreducible decomposition of the exceptional set A. For a cycle $D = \sum_i d_iA_i$ on the exceptional set A, let's coeff$_{\tilde{E}_i}$(D) denote the coefficient d_i of D on A_i. For an exceptional subset $A' \subset A$, $D|_{A'}$ is the restriction of D onto A'. Namely $D|_A = \sum_{A_i \subset A} d_iA_i$. For $f \in C(x, y)$, let ord (f) be the order of zeros of f. Further, (-1)-curve means a projective line whose self-intersection number equals -1.

2. MAXIMAL IDEAL CYCLES AND FUNDAMENTAL CYCLES.

In this section we study the relation between the maximal and the fundamental cycles for a normal double point $(X, o) = \{z^2 = f(x, y)\}$, where $f \in C(x, y)$. If ord (f) is even, then $Z^2 = -2$ (this fact was included in the proof of Theorem 1 in [4]). Therefore, in this section, we only consider the case where ord (f) is odd. Let \tilde{M} be the maximal ideal cycle on the minimal resolution. Since $0 \leq -Z^2 \leq -\tilde{M}^2$, we classify such normal double points into three types as follows:

- type $(2, 2)$: $Z^2 = -2$
- type $(1, 2)$: $Z^2 = -1$ and $\tilde{M}^2 = -2$
- type $(1, 1)$: $\tilde{M}^2 = -1$.

We can see that if (X, o) is type $(2, 2)$ (resp. $(1, 1)$), then $\tilde{M}^2 = -2$ (resp. $Z^2 = -1$). For example, let $(X, o) = \{z^2 = x^2 + y^2\}$. If $2 \leq n \leq 5$ (resp. $6 \leq n$), then (X, o) is of type $(2, 2)$ (resp. $(1, 1)$). Further the singularity $z^2 = x^2 + y^2$ described in section 1 is of type $(1, 2)$. For any double point with $Z^2 = -2$, we have $M = Z$ for any resolution. Hence we are only concerned for the case of $Z^2 = -1$ in this section.

In this section we prove that the ratio of coefficients of M and Z on any exceptional curve in any covering resolution is always one or two. Our main result in this section is Theorem 2.4.

In the following of this section, we assume that $Z^2 = -1$ (so ord (f) is odd) and (\tilde{X}, \tilde{E}) is a covering resolution over (X, E) as in (1.1), and let $\tilde{E} = \bigsqcup \tilde{E}_i$ and $E = \bigsqcup E_i$. We note that E_i is not necessarily irreducible. In the following, we assume that M (resp. Z) is usually the maximal ideal cycle M_E (resp. fundamental cycle Z_E) on (\tilde{X}, \tilde{E}).

Lemma 2.1. ([6]) We have the following : coeff$_{\tilde{E}_i}$ $M = 2, \tilde{M}^2 = -2, Z \cdot E_i = 0$ and

$$
M \cdot E_i = \begin{cases}
-1 & \text{if } i = 1 \\
0 & \text{if } i \neq 1
\end{cases}
$$

Let $\tilde{E}_i, \cdots, \tilde{E}_n$ be all irreducible curves intersecting \tilde{E}, and $d_j = $ coeff$_{\tilde{E}_i}$ \tilde{Z} for any j. By changing indices suitably we may suppose that a_1, \cdots, a_s are odd and a_{s+1}, \cdots, a_n are even. Since \tilde{E}_i is an (f)-odd curve, E_{i+1}, \cdots, E_n are irreducible from the rule in [5]. Hence it is obvious that $E - E_i$ decomposes into m connected components. Let F_j be a connected component containing E_i. We call $\{F_{i+1}, \cdots, F_k\}$ (resp. $\{F_{i+1}, \cdots, F_k\}$) odd (resp. even) connected components in E. Since $-1 = Z \cdot \tilde{E}_i = \tilde{E}_i^2 + \sum a_j$ and $\tilde{E}_i^2 = 2b_i^2$, there exists at least one odd connected component (i.e., $k \geq 1$). Let $E(1)$ be the union of all even
connected components and E_i, and let $E(2)$ be the union of all odd connected components. We call $E(1)$ (resp. $E(2)$) the even (resp. odd) part of E. Since $Z^2 = -1$ and Lemma 2.1, there is only one irreducible exceptional curve $E_p (p \neq 1)$ such that $Z \cdot E_p = -1$. Then the intersection number of Z and any other component except for E_p is 0.

Lemma 2.2. (i) $\text{Coeff} \{Z = 1\}$ and the number of odd connected components is one (i.e., $k=1$ and $E(2) = F_i$).

(ii) E_p is contained in the odd connected component F_i.

(iii) The restrictions of M and Z onto the even part $E(1)$ have the relation $M|_{E(1)} = 2Z|_{E(1)}$.

Proof. From Lemma 2.1, we have $1 \leq \text{Coeff} \{Z = 1\} \leq \text{Coeff} \{M = 2\}$. Assume $\text{Coeff} \{Z = 2\}$. Then $-1 = M \cdot E_i = 2E_i^2 + (M - 2E_i) \cdot E_i$ and $0 = Z \cdot E_i = 2E_i^2 + (Z \cdot 2E_i) \cdot E_i$. But this contradicts the inequality $(M - 2E_i) \cdot E_i \geq (Z - 2E_i) \cdot E_i$. Then $\text{Coeff} \{Z = 1\}$. Since $E_p \neq E_i$, we assume that E_p is contained in a connected component F_i. Let $\bar{F_i}$ be the union of connected components except for F_p, so $E = E_i \cup \bar{F_i}$. Let consider decompositions $Z = Z_1 + Z_2$ and $M = M_1 + M_2$, where $M_1 = M|_{\bar{F_i}}$, $Z_1 = Z|_{\bar{F_i}}$, $M_2 = M|_{E_i \cup F_i}$ and $Z_2 = Z|_{E_i \cup F_i}$. We consider any irreducible curve $E_{\bar{i}}$ in F_i with $i \neq j$. If $E_{\bar{i}}$ intersects E_i, then we have $Z \cdot E_{\bar{i}} = (Z - Z_1) \cdot E_{\bar{i}} = -Z_2 \cdot E_{\bar{i}} = -E_i \cdot E_{\bar{i}} = -1$ and we can see $M_1 \cdot E_{\bar{i}} = -2$ similarly. Further, if $E_{\bar{i}}$ doesn't intersect E_i, then $Z_1 \cdot E_{\bar{i}} = (Z - Z_2) \cdot E_{\bar{i}} = -Z_2 \cdot E_{\bar{i}} = 0$ and also $M_1 \cdot E_{\bar{i}} = 0$. Therefore, by Cramer's rule, we have $M_1 = 2Z_1$ on $\bar{F_i}$. Let $(E_{\bar{i}}|_{\bar{F_i}})_{1, \ldots, n}$ and $(E_{\bar{i}}|_{\bar{F_i}})_{1, \ldots, k}$ be as above. Since E_i is an (f)-odd curve, any $E_{\bar{i}}$ is an (f)-even curve from the assumption about a covering resolution in (2.1). Then $\text{Coeff} \{E_i \} = \text{Coeff} \{Z = a_j \}$ and this is an odd number for $i = 1, \ldots, k$.

Now we consider the relation between M and Z on $E(2)$. By changing the order of blowing-ups to get E, we may assume that $E(2) = \bigcup_{i=1}^{n} E_i$ and E_2 is only one irreducible curve in $E(2)$ which intersects E_i. We prove that E_p above is equal to E_2.

Lemma 2.3. (i) $M|_{E(2)} = Z|_{E(2)}$.

(ii) $Z \cdot E_2 = -1 (\text{i.e., } E_p = E_2)$, $E_i \cdot E_2 = 1$ and $\text{Coeff} \{M = \text{Coeff} \{Z = 1\}$.

Proof. Let $D = M - Z$. Then $D > 0$ from Lemma 2.1 and $-2 = M^2 = Z^2 + 2Z \cdot D + D^2$. Since $Z^2 = -1$ and $D^2 < 0$, we have $Z \cdot D = 0$ and $D^2 = -1$. Since $Z \cdot E_i = -1$, we have

- (2.1) $E_p \not\subseteq \text{Supp}(D)$.

Then $\text{Coeff} \{M = \text{Coeff} \{Z = 1\}$. If the inverse image $\pi^{-1}(\pi(E_p))$ is a union of two disjoint irreducible curves $E_p \not\subseteq E_p$, then $Z \cdot E_p = Z \cdot E_p = -1$ and so $Z^2 \leq -2$. This contradicts $Z^2 = -1$, then $\pi^{-1}(\pi(E_p)) = E_p$. Also the configuration of $\pi(E(2))$ is a tree, then we can see that the support of $E - E_p$ decomposes into at most two disjoint connected components $E[1]$ and $E[2]$, where we assume $E_1 \subseteq E[1]$. Then $E = E[1] \cup E_p \cup E[2]$. It is possible that $E[2]$ is empty, here, by suitably exchanging indices, we may assume that $\bigcup_{i=1}^{n} E_i \subseteq E[1]$ and $\bigcup_{i=1}^{n} E_i \subseteq E[2]$. From (2.1) we have a decomposition $D^1 = D_1^1 + D_2^1$ such that $\text{Supp}(D_i) \subseteq E[1]$ for $i = 1, 2$. Since $-1 = D^1 = D_1^1 + D_2^1$ and $D_i \cdot E_1 = D_1 \cdot E_1 = (M - Z) \cdot E_1 = -1$ from Lemma 2.1, we have $D_1^1 = -1$ and $D_2^1 = 0$. Therefore $D_2 = 0$, so we have

- (2.2) $\text{Supp}(D) \subseteq E[1]$ and $M = Z$ on $E_p \cup E[2]$.

Since $D \cdot E_p = (M - Z) \cdot E_p = -1$ and (2.1), there is only one irreducible curve E_{p-1} in $E[1]$ which intersects E_p. Then we have

- (2.3) $\text{Coeff} \{E_{p-1} \} = D_1 = 1$.

From now on we prove $p > 2$. We assume $p > 2$, so we have $D \cdot E_{p-1} = (M - Z) \cdot E_{p-1} = 0$. Further $D \cdot E_i = (M - Z) \cdot E_i = -1$ by Lemma 2.1. Hence we get the following:

- (2.4) $D \cdot E_i = -1$ if $i = 1, \ldots, p-1$.
- $D \cdot (\text{any other curve in } E(1)) = 0$.

From (2.2) and Lemma 2.2 (i) and $E(1) \subseteq \text{Supp}(D)$, we have

- (2.5) $\text{Supp}(D) = E[1]$.

In fact, if $\text{Supp}(D) \not\subseteq E[1]$, there is $E_i \subseteq E[1]$ satisfying $E_i \not\subseteq \text{Supp}(D)$ and $2 \leq j \leq p - 1$. Then there exists a curve E_j with $D \cdot E_j > 0$ among such curves. But this contradicts (2.4), so (2.5) holds. Now let \tilde{Z} be the fundamental cycle on $E[1]$, so $D \geq \tilde{Z}$ from (2.4).
We have \(1 = -D' \geq -Z' \geq 1\) and \(Z \geq Z\) from the definition of \(Z\). From a lemma in [2] (p.426) we also have

\[(2.6) \quad D = Z\text{ and } Z \geq D.\]

Since \(\text{coeff}_E Z = 1\), it is easy to check that \(Z|_{\mathcal{E}(1)} = \hat{Z}|_{\mathcal{E}(1)}\). We put \(D' = Z - D\). Then we have \(\text{Supp}(D') \subset \mathcal{E}(2) = \bigcup_{E_j} E_j\). Further we have \(D' \cdot E_p = (Z - \hat{Z}) \cdot E_p = -Z \cdot E_p - (M - Z) \cdot E_p = 0\) from \(p > 2\). Since \(Z \cdot E_p = 1\) by (2.3), this implies \(D' \cdot E_p = (Z - \hat{Z}) \cdot E_p = -2\).

Hence we have the following:

\[(2.7) \quad \begin{cases} D' \cdot E_p = 0 \text{ if } 2 \leq j \leq p - 1 \text{ or } p < j \\ D' \cdot E_p = -2. \end{cases}\]

Since \(M = Z + D = 2D + D'\) and \(M^2 = -2\) and \(D^2 = -1\), we have \(4D' \cdot D' + D' \cdot D = 2\). We put \(D' = \sum d_j E_j\), so \(D' = -2d_p\) from (2.7) and \(D^2 = d_p\) from (2.3) and (2.4). Hence \(d_p = 1\). From \(E_p \subset \text{Supp}(\hat{Z}) = \mathcal{E}(1)\) and \(Z = \hat{Z} + D'\), we have

\[(2.8) \quad \text{coeff}_{E_p} Z = 1.\]

Therefore we can easily see that \(Z = Z|_{\mathcal{E}(1)} + Z|_{\mathcal{E}(2)} = E_p\) and \(Z|_{\mathcal{E}(1)} = \hat{Z} = D\). Then \(M = 2Z|_{\mathcal{E}(1)} + Z|_{\mathcal{E}(2)} + E_p\) and \(\text{coeff}_{E_p} M = 2 \cdot \text{coeff}_{E_p} Z\) from \(E_p \subset \mathcal{E}(1)\). On the other hand, we have \(\text{coeff}_{E_p} Z = 1\) odd, this yields a contradiction. Then we have \(p = 2\). Hence \(M|_{\mathcal{E}(1)} = Z|_{\mathcal{E}(1)}\) and \(E(1) = \mathcal{E}(1)\) and \(E(2) = \mathcal{E}(2) \cup E_p\).

Since \(M = Z + Z|_{\mathcal{E}(1)}\), we have \(-1 = M \cdot E_i = (Z|_{\mathcal{E}(1)}) \cdot E_i = (Z - (\text{coeff}_{E_p} Z) E_p) \cdot E_i = -\text{coeff}_{E_p} Z\). Then \(\text{coeff}_{E_p} M = 1\). Q.E.D.

Theorem 2.4. Assume \((X, o)\) is a normal double point of type \((1,2)\). Let \((\hat{X}, A)\) be the minimal resolution or the minimal good resolution of \((X, o)\). Let \(M_A\) (resp. \(Z_A\)) be the maximal ideal (resp. fundamental) cycle on \(A\).

(i) The exceptional set \(A\) has a decomposition \(A = A(1) \cup A(2)\) with following two properties:

(a) \(A(1)\) and \(A(2)\) are non-empty connected 1-dimensional subvarieties of \(A\) without common irreducible curves and satisfy \(A(1) \cdot A(2) = 1\).

(b) Let \(M|_{A(i)}\) and \(Z|_{A(i)}\) be the restrictions of \(M_A\) and \(Z_A\) onto \(A(i)\) for \(i = 1, 2\). Then \(M|_{A(1)} = Z|_{A(1)}\) and \(M|_{A(2)} = Z|_{A(2)}\).

(ii) Let \(A_1 \subset A(1)\) and \(A_2 \subset A(2)\) be two irreducible curves with \(A_1 \cdot A_2 = 1\), where \(A_i\) exists uniquely for \(i = 1, 2\) from (i). Then \(M \cdot A_i = -1\), \(\text{coeff}_{A_i} M = 2\), \(Z \cdot A_i = -1\) and \(\text{coeff}_{A_i} Z = 1\).

Moreover, if \((X, o)\) is of type \((1,1)\), then \(M_A = Z_A\) on \((\hat{X}, A)\).

Proof. Let \((\hat{X}, E)\) be a good resolution space as in (1.1). By contracting \((-1)\)-curves suitably, we get the minimal good resolution space \((\hat{X}, A)\). Let \(\varphi : (\hat{X}, E) \rightarrow (\hat{X}, A)\) be a such contraction map. If \(E_i\) is an irreducible curve in \(E\) which is not contracted to a point, then we have \(\text{coeff}_{E_i} Z_A = \text{coeff}_{E_i} Z_A\) and \(\text{coeff}_{E_i} M_A = \text{coeff}_{E_i} M_A\). Therefore, if every curve of \(E(1)\) is contracted by \(\varphi\), then \(M_A = Z_A\) and \(M_A^2 = -1\). It contradicts the assumption of type \((1,2)\). Then the even part \(E(1)\) is not contracted to a point under \(\varphi\). Further the odd part \(E(2)\) is not contracted through \(\varphi\). Because if \(\varphi(E(2))\) is a point, then \(M_A = 2Z_A\) on the minimal good resolution, so \(M_A^2 = -4\). This yields a contradiction. Moreover we can easily see that if \(E_1\) (resp. \(E_2\)) is contracted to a point through \(\varphi\), then \(\text{coeff}_{E_i} Z_A\) (resp. \(\text{coeff}_{E_i} Z_E\)) is larger than one. It contradicts Lemma 2.2 and 2.3. Therefore \(E_1\) and \(E_2\) are not contracted through \(\varphi\). Then if we put \(A(1) = \varphi(E(1))\), \(A(2) = \varphi(E(2))\), \(A_1 = \varphi(E_1)\), and \(A_2 = \varphi(E_2)\), then these subvarieties satisfy the conditions of Theorem 2.4. For the case of the minimal resolution we can prove it similarly.

Assume \((X, o)\) is of type \((1,1)\). If \((\hat{X}, A)\) is the minimal resolution, then \(M_A = Z_A\). Then we consider the case of the minimal good resolution. Let \((\check{X}, E)\) be a good resolution of \((X, o)\) as in (1.1). From Lemma 2.2 and 2.3, it is easy to check that there is a contraction map \(\gamma\) of all curves in \(E(1)\) such that \(\gamma\) doesn't contract any curve in \(E(2)\). Since \(E(2)\) is simple normal crossing on \(\gamma(\check{X})\) and we have \(M_E = Z_E\) on the good resolution space \((\check{X}, E)\), the equality also holds on the minimal good resolution. Q.E.D.

We call \(A(1)\) (resp. \(A(2)\)) the even (resp. odd) part of \(A\).

Remark 2.5. U. Karras [7] introduced the notion of Kodaira singularities in terms of pencils of curves. Let \(\pi : (\check{X}, A) \rightarrow (X, o)\) be a minimal good resolution of a normal complex surface singularity. In [8], he also proved that \((X, o)\) is a Kodaira singularity if and only if the maximal ideal cycle \(M_A\) and the fundamental cycle \(Z_A\) on \(A\) are equal and the w.d. graph is a Kodaira graph (i.e., \(\text{coeff}_{A} Z_A = 1\) for every \(A_i\) with \(Z_A \cdot A_i < 0\)). In [9], the author proved
that if \((X, o) = (x^n = f(x, y))\) and \(ord(f)\) is divided by \(n\), then \((X, o)\) is a Kodaira singularity (also see [10]).

Let \((X, o) = (\tilde{z} = f(x, y))\) be a normal double point. Then if \(ord(f)\) is even, \((X, o)\) is a Kodaira singularity. Hence we suppose \(ord(f)\) is odd. If \((X, o)\) is of type \((2,2)\) or \((1,2)\), then it is not a Kodaira singularity. Because if \((\tilde{X}, E)\) is a covering resolution, then we have \(Z \cdot E_i = -1\) and \(\text{coeff}_E Z = 2\) for \((2,2)\) and \(Z_E < M_E\) for \((1,2)\). These relations are kept onto \(A\) through a contraction \(\tilde{X} \rightarrow \tilde{X}\), so we have the above. Next suppose that \((X, o)\) is of type \((1,1)\). It is obvious that the w.d. graph on the minimal good resolution is a Kodaira graph from \(Z^2 = -1\). Further we proved in Theorem 2.4 that \(M = Z\) on the minimal good resolution. Then \((X, o)\) is a Kodaira singularity from Karras's result.

Example 2.6. Let \((X, o)\) be a normal double point \([z^2 = y(y^2 + x^3)(x^3 + y^6)] \subset (C, 0)\). The w.d. graph of the minimal good resolution is given as follows:

```
      A_6
     /   \
    /     \
   A_1   A_2
  /   \
-1   -6

[1]
```

Then we have \(A(1) = A_1 \cup A_6\) and \(A(2) = \bigcup A_i\). From Theorem 2.4 we have \(M_A = 2A_6 + 2A_1 + A_2 + 4A_3 + 2A_4 + A_6\) and \(Z_A = A_6 + A_1 + A_2 + 4A_3 + 2A_4 + A_6\). Hence \((X, o)\) is of type \((1,2)\) and \(M_A \cdot A_1 = Z_A \cdot A_2 = -1\).

REFERENCES

9. T. Tomaru: On Kodaira singularities defined by \(z^n = f(x, y)\): Preprint, 1997.