A formula of the fundamental genus for hypersurface singularities of Brieskorn type.

Tadashi Tomaru

College of Medical Care and Technology, Gunma University,
Maebashi, Gunma 371, Japan

Received November 30, 1996

Key Words : Singularity, Fundamental genus

Summary : In [6] the author proved a formula for the fundamental genus of hypersurface singularities defined by Brieskorn type with three variables. In present paper we prove a more generalized formula for such singularities.

0. Introduction

Let \(\pi : (\tilde{X}, A) \to (X, z) \) be a resolution of a normal surface singularity, where \(\pi^{-1}(z) = A = \bigcup_{i=1}^{n} A_i \) is the irreducible decomposition of the exceptional set \(A \). For a cycle \(D = \sum_{i=1}^{n} d_i A_i \ (d_i \in \mathbb{Z}) \) on \(A \), \(\chi(D) \) is defined by \(\chi(D) = \text{dim}_c H^0(\tilde{X}, \mathcal{O}_D) - \text{dim}_c H^1(\tilde{X}, \mathcal{O}_D) \), where \(\mathcal{O}_D = \mathcal{O}_{\tilde{X}} / \mathcal{O}(-D) \). Then \(\chi(D) = -\frac{1}{2}(D^2 + DK_{\tilde{X}}) \), where \(K_{\tilde{X}} \) is the canonical sheaf (or divisor) on \(\tilde{X} \). For any irreducible component \(A_i \), we have \(K_{\tilde{X}} A_i = -A_i^2 + 2g(A_i) - 2 + 2\delta(A_i) \) (adjunction formula), where \(g(A_i) \) is the genus of the non-singular model of \(A_i \) and \(\delta(A_i) \) is the degree of the conductor of \(A_i \) (cf. [2]). The arithmetic genus of \(D \geq 0 \) is defined by \(p_a(D) = 1 - \chi(D) \). The fundamental cycle on \(A \) is defined as follows (cf. [1]):

\[Z = \min \{ D = \sum_{i=0} a_i A_i | DA_i \leq 0 \text{ for any } i \text{ and } a_i > 0 \} \]

The following number for surface singularities is defined by (cf. [7])
$p_f = p_f(X, z) = p_a(Z)$ (fundamental genus),
and this is a topological invariant and independent of the choice of a resolution
of (X, z). We call $p_f(X, z)$ the fundamental genus of (X, z).

In this paper we consider the fundamental genus of hypersurface singularities
of Brieskorn type with degree (a_0, a_1, a_2) (i.e., $(X, z) = \{x_0^{a_0} + x_1^{a_1} + x_2^{a_2} = 0\} \subseteq \mathbb{C}^3$). For them, the author has proved in [6] that $p_f(X, z) = \frac{1}{2} \{(a_0 - 1)(a_1 - 1) - (a_0, a_1) + 1\}$ under the condition: $a_2 \geq l.c.m.(a_0, a_1)$.

(cf. Theorem 4.3. [6]). We improve this formula in the following.

Notations. For integers a_1, a_2, \ldots, a_n ($n \geq 2$), we put

$$[a_1, a_2, \ldots, a_n] := a_1 - \frac{1}{a_2 - \frac{1}{\ddots - \frac{1}{a_n}}}$$

(continued fraction).

For real number a, we put $[a] := \max \{n \in \mathbb{Z} | n \leq a\}$ (Gauss symbol) and

$\{a\} = \min \{n \in \mathbb{Z} | n \geq a\}$. Further, for positive integers a_1, \ldots, a_n, we put

$$(a_1, \ldots, a_n) := g.c.m.(a_1, \ldots, a_n).$$

1. Preliminaries First we describe a resolution of a singularity defined
by $x_0^{a_0} + x_1^{a_1} + x_2^{a_2}$. For integers a_0, a_1 and a_2, we denote the following integers:

$$d_6 = (a_0, a_1, a_2), d_3 = \frac{(a_1, a_2)}{d_6}, d_4 = \frac{(a_0, a_2)}{d_6},$$

$$d_5 = \frac{(a_0, a_1)}{d_6}, d_0 = \frac{a_0}{d_4 d_5 d_6}, d_1 = \frac{a_1}{d_3 d_5 d_6}, d_2 = \frac{a_2}{d_3 d_4 d_6}.$$ Further, let e_i ($i = 0, 1, 2$) be an integer defined by $e_i; 1 + 1 \equiv 0(d_i)$ and $0 < e_i < d_i$. If $\pi : (\tilde{X}, A) \rightarrow (X, z)$ is a resolution of a normal surface singularity with
\mathbb{C}^*-action. Then the configuration of the weighted dual graph is a star-shaped
graph. Especially, the weighted dual graph associated to $x_0^{a_0} + x_1^{a_1} + x_2^{a_2}$ is given by following forms:

[Diagram of a star-shaped graph]
where (b_{i1}, \ldots, b_{ir}) means cyclic branch determined by the cyclic quotient singularity $C_{d_{i1}}$, and $[b_{i1}, \ldots, b_{ir}] = \frac{d_i}{e_i}$ ($i = 0, 1, 2$). Their all components are \mathbb{P}^1. A_0 is a curve of genus g, which is called the central curve.

In this situation we denote \mathbb{Q}-coefficient divisor D and \mathbb{Z}-coefficient divisor $[kD]$ on A_0 as follows:

$$D := D_0 - \sum_{i=0}^{2} \sum_{j=1}^{d_{i+3}} \frac{e_i}{d_i} P_{ij} \quad \text{and} \quad [kD] := kD_0 - \sum_{i=0}^{2} \sum_{j=1}^{d_{i+3}} \left\{ \frac{ke_i}{d_i} \right\} P_{ij},$$

where k is a non-negative integer and D_0 is a divisor on A_0 such that $\mathcal{O}_{A_0}(D_0)$ is the restriction to A_0 of the conormal sheaf of A_0 in \bar{X}. Let’s m be an integer defined by $\min\{k \in \mathbb{Z} | \deg[kD] \geq 0\}$.

2. Main Results

Lemma 1. If $a_0 \leq a_1 \leq a_2$, then $m = \min\{d_0d_1d_2, d_0d_1d_3\}$.

Proof. First we prove the following:

\begin{equation}
(2.1) \quad m = l_2 \text{ if } d_2 \geq d_3.
\end{equation}

From the definition of $[kD]$, we have

$$\deg[kD] = d_6 \left\{ \frac{k}{d_0d_1d_2} - \sum_{i=0}^{2} d_{3+i}(\left\{ \frac{ke_i}{d_i} - \frac{ke_i}{d_i} \right\}) \right\}.$$

Therefore we can easily see the following:

$$\deg[l_2D] = d_6 \left\{ \frac{l_2}{d_0d_1d_2} - d_5 \left\{ \frac{2e_2}{d_2} \right\} + \frac{d_3l_2e_2}{d_2} \right\}$$

$$= d_5d_6 \left\{ \frac{l_2}{d_2} - \left\{ \frac{2e_2}{d_2} \right\} + \frac{2e_2}{d_2} \right\} = 0$$

from the relation: $l_2e_2 + 1 \equiv 0(d_2)$. Hence we may only prove that

\begin{equation}
(2.2) \quad \deg[kD] < 0 \text{ for any } k \text{ with } 0 < k < l_2.
\end{equation}

For such integer k, if $d_2 \nmid k$, then

$$\frac{1}{d_6} \deg[kD] \leq \frac{k}{d_0d_1d_2} - \sum_{i=0}^{2} d_{3+i}(\left\{ \frac{ke_i}{d_i} - \frac{ke_i}{d_i} \right\}) < 0.$$

We prove (2.2) for the case $d_2|k$. Let $k = d_2t$. Then

$$\frac{1}{d_6} \deg[kD] = \frac{t}{d_0d_1} - \sum_{i=0}^{1} d_{3+i}(\left\{ \frac{d_2e_it}{d_i} - \frac{d_2e_it}{d_i} \right\}).$$

If $d_0|t$ and $d_1|t$, then $d_0d_1d_2(= l_2)|t$. It contradicts the inequality $k < l_2$. Assume that $d_0 \nmid t$. Then

$$\frac{1}{d_6} \deg[kD] \leq \frac{t}{d_0d_1} - d_3(\left\{ \frac{d_2e_0t}{d_0} - \frac{d_2e_0t}{d_0} \right\})$$

$$\leq \frac{t}{d_0d_1} - d_3 = \frac{d_2t - l_0}{d_0d_1d_2} = \frac{k - l_0}{d_0d_1d_2}.$$

From the assumption $a_0 \leq a_1$, we have $l_2 \leq l_0$. Then $k - l_0 < 0$, so $\deg[kD] < 0$.

Next assume that $d_1 \nmid t$. Then

\[\text{...} \]
\[
\frac{1}{d_6} \deg[kD] \leq \frac{t}{d_0 d_1} - d_4 \left(\frac{d_2 \varepsilon_1 t}{d_1} - \frac{d_3 \varepsilon_1 t}{d_1} \right)
\leq \frac{t}{d_0 d_1} - \frac{d_4}{d_0} = \frac{d_4}{d_0 d_1} \frac{d_4}{d_2} = \frac{k - l_1}{d_0 d_1 d_2}.
\]

From the assumption \(a_1 \leq a_2\), we have \(l_2 \leq l_1\). Then \(k - l_1 < 0\), so \(\deg[kD] < 0\).

Second we prove the following:

\[
(2.3) \quad m = d_0 d_1 d_2 \text{ if } d_2 < d_5.
\]

Since \(\deg[d_0 d_1 d_2 D] = d_6 > 0\), we may only prove that \(\deg[kD] < 0\) for any \(k\) with \(0 < k < d_0 d_1 d_2\). For an integer \(k\) as above, \(d_i\) doesn't divide \(k\) for some \(i \in \{0, 1, 2\}\). Assume that \(d_0 \nmid k\). Then

\[
\frac{1}{d_6} \deg[kD] = \frac{k}{d_0 d_1 d_2} - \sum_{i=0}^{2} d_{3+i}(\{\frac{ke_i}{d_i}\} - \frac{ke_i}{d_i})
\leq \frac{k}{d_0 d_1 d_2} - \frac{d_3}{d_0} = \frac{k - l_0}{d_0 d_1 d_2}.
\]

Since \(d_2 < d_5\) and \(k < d_0 d_1 d_2 < l_2 \leq l_0\), we have \(\deg[kD] < 0\). Q.E.D.

Theorem 2. For hypersurface singularity \((X, z) = \{x_0^{a_0} + x_1^{a_1} + x_2^{a_2} = 0\} \subset C^3\), we have following formulae.

1. If \(m = l_2\), then \(p_f(X, z) = \frac{1}{2} \left((a_0 - 1)(a_1 - 1) - (2\frac{d_2}{d_0} + 1)(a_0, a_1) + 1 \right)\).
2. If \(m = d_0 d_1 d_2\), then \(p_f(X, z) = \frac{d_4}{2} \left(a_0 l_0 - m - l_0 - l_1 - l_2 + 1 \right) + 1\).

Proof. By the formula of \(p_f(X, z)\) due to Masataka Tomari (Theorem 3.1, [6]) and Riemann-Roch Theorem,

\[
p_f(X, z) = \sum_{k=0}^{m-1} \dim_C H^0(A_0, \mathcal{O}_C(KA_0 - [kD]))
= g + \sum_{k=1}^{m-1} \{\deg(KA_0 - [kD]) - g + 1\}
= g + \sum_{k=1}^{m-1} \{g - 1 - \deg[kD]\} = m(g - 1) + 1 - \sum_{k=1}^{m-1} \deg[kD].
\]

We have

\[
\sum_{k=1}^{m-1} \deg[kD] = \frac{d_4}{d_0 d_1 d_2} \cdot \frac{m(m - 1)}{2} - d_6 \sum_{k=1}^{m-1} \sum_{i=0}^{2} d_{3+i}(\{\frac{ek_i}{d_i}\} - \frac{ek_i}{d_i}).
\]

Now we prove (1), so assume \(m = l_2(= d_0 d_1 d_5)\). Then

\[
\sum_{k=1}^{l_2-1} \left(\{\frac{ek_0}{d_0}\} - \frac{ek_0}{d_0} \right) = \frac{d_4 d_5 (d_0 - 1)}{2},
\]

\[
\sum_{k=1}^{l_2-1} \left(\{\frac{ek_1}{d_1}\} - \frac{ek_1}{d_1} \right) = \frac{d_6 d_5 (d_1 - 1)}{2},
\]

\[
\sum_{k=1}^{l_2-1} \left(\{\frac{ek_2}{d_2}\} - \frac{ek_2}{d_2} \right) = \frac{(l_2 - 1)(d_2 + 1) - l_2}{2d_2}.
\]

Therefore we have the following:

\[
- 148 -
\]
\[
\frac{d_0d_1d_2}{d_6} \sum_{k=0}^{l_2-1} \deg[kD] = \sum_{k=1}^{l_2-1} k - d_0d_1d_2 \sum_{i=0}^{2} d_3 + i \sum_{k=1}^{l_2-1} \left(\left\{ \frac{e_i}{d_i} \right\} - \frac{e_i}{d_i} \right)
\]
\[
= \frac{l_2(l_2-1)}{2} - d_0d_1d_2d_5 \left\{ \frac{d_1d_3(d_0-1)}{2} + d_0d_4(d_1-1) \right\}
\]
\[
+ \left(\frac{l_2-1}{2d_2} + \frac{l_2}{d_2} \right)
\]
\[
= \frac{l_2}{2} \left\{ \frac{l_2-1}{2} - \frac{(l_2-1)(d_2+1)}{2} - \frac{l_0(d_0+1)}{2} - \frac{l_1(d_1-1)}{2} + d_2 \left[\frac{l_2}{d_2} \right] \right\}
\]
\[
= \frac{l_2}{2} \left\{ -l_2d_2 + d_2 - l_0d_0 + l_0 - l_1d_1 + l_1 + 2d_2 \left[\frac{l_2}{d_2} \right] \right\}.
\]

From the computations above, we obtain the following.
\[
p_f(X, z) = \frac{l_2(d_3d_4d_5d_6^2 - d_0d_3 - d_6d_4 - d_6d_5)}{2} + 1
\]
\[
- \frac{d_5}{2d_2} \left\{ -l_2d_2 + d_2 - l_0d_0 + l_0 - l_0d_1 + l_1 + 2d_2 \left[\frac{l_2}{d_2} \right] \right\}
\]
\[
= 1 + \frac{1}{2} \left\{ a_0a_1 - a_0 - a_1 - (a_0, a_1) - 2d_5d_6 \left[\frac{l_2}{d_2} \right] \right\}
\]
\[
= \frac{1}{2} \left\{ (a_0-1)(a_1-1) - \frac{(l_2^2)}{d_2} + 1 \right\}.
\]

Now we prove (2), so \(m = d_0d_1d_2 \). We have the following equality (see [6], Lemma 4.2):
\[
\sum_{k=1}^{d_0d_1d_2-1} \left(\left\{ \frac{ke_0}{d_0} \right\} - \frac{ke_0}{d_0} \right) = \frac{d_1d_3(d_0-1)}{2}.
\]

Then
\[
p_f(X, z) = m(g-1) + 1 - \frac{d_6}{2} \left(m - \frac{1}{2} \right) + \frac{d_6}{2} \sum_{i=0}^{2} d_3 + i \sum_{k=1}^{m-1} \left(\left\{ \frac{e_i}{d_i} \right\} - \frac{e_i}{d_i} \right)
\]
\[
= m(g-1) - \frac{d_6}{2} + \frac{d_6}{2} \left\{ d_1d_2d_3(d_0-1) + d_0d_2d_4(d_1-1) + d_0d_1d_5(d_2-1) \right\}
\]
\[
= m(g-1) - \frac{d_6}{2} + \frac{d_6}{2} + \frac{md_6}{2} \left(d_3 + d_4 + d_3 \right) - \frac{d_6}{2} \left(l_0 + l_1 + l_2 \right)
\]
\[
= \frac{md_6}{2} \left(d_3d_4d_5d_6 - 1 \right) + \frac{d_6}{2} \left(l_0 + l_1 + l_2 \right) + \frac{d_6}{2} + 1
\]
\[
= \frac{d_6}{2} \left\{ a_0l_0 - m - l_0 - l_1 - l_2 + 1 \right\} + 1. \text{Q.D.E.}
\]

Corollary 3 (cf. Theorem 4.3 in [6]). If \(a_2 \geq l.c.m.(a_0, a_1) \), then
\[
p_f(X, z) = \frac{1}{2} \left((a_0-1)(a_1-1) - (a_0, a_1) + 1 \right).
\]

Proof. By the assumption, we have \(m = l_2 \) and \(\left[\frac{l_2}{d_2} \right] = 0 \). From (1) of Theorem 2 we obtain the result. Q.E.D.
Example 4. Let \((X, z) = \{z_0^6 + z_1^{10} + z_2^{d_2}\}\). If we vary \(d_2\), we have the following table of \(p_f(X, z)\):

\[
\begin{array}{cccccccc}
 \quad & a_2 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\end{array}
\]

In the table above, we have \(m = d_0d_1d_2 = 1\) for the case of \(a_2 = 15\).

REFERENCES

