Academic Knowledge Archives of Gunma Institutes >
上武大学(Jobu University) >
03 紀要論文 (Departmental Bulletin Paper) >
0304 上武大学経営情報学部紀要 >
(2012)第37号 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10087/7784

Title: 有限な大局次元を持つサイクル型単列環の長さと大局次元の上限の関係について
Other Titles: On the Relation of the Upper Bound of the Global Dimension and the Length of Serial Algebra of Cyclic Type Which Has Finite Global Dimension
Authors: 植松, 盛夫
Keywords: 大局次元
global dimension
serial algebra
admissible sequence
compositon length
Issue Date: 28-Dec-2012
Publisher: 上武大学
Citation: 上武大学経営情報学部紀要. 2012, no.37, p.1-15
Jobu Daigaku Keiei Joho Gakubu kiyo (Bulletin of Faculty of Management Information Sciences, Jobu University). 2012, no.37, p.1-15
Abstract: Aを有限の大局次元を持つサイクル型の単列環で、その単純加群の個数をnとする。k<n/2なる任意の自然数kに対して環の長さlがn/k以上の最小の整数であるとき、Aの大局次元は2n-2k-1以下である。
Let A be the finite dimensional serial algebra of cyclic type over an algebraically closed field which has finite global dimension, and let n be the number of the non isomorphic simple left modules of A. Let k be a positive integer with k<n/2. If the length of A is the minimal positive integer which greater than n/k, then the global dimension of A is less than or equal to 2n-2k-1.
URI: http://hdl.handle.net/10087/7784
ISSN: 0915-5929
NII paper ID: http://ci.nii.ac.jp/naid/110008801679
Appears in Collections:(2012)第37号

Files in This Item:

File Description SizeFormat
730-37-001.pdf612.03 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2010  Duraspace - Feedback